
Universitat

Autònoma

de Barcelona

Master in Computer Vision and Artificial Intelligence

Report of the Master Project

Option: Artificial Intelligence

Multi-Reactive Planning for
Real-Time Strategy Games

Author: Alberto Uriarte Pérez

Advisor: Santiago Ontañón Villar

Acknowledgements

I would like to thank my supervisor Dr. Santiago Ontañón for invaluable support and

guidance throughout the work. I also would like to thank my friend Albert Puértolas for trying

to make me a better C++ programmer and valuable comments and corrections.

i

ABSTRACT

Real-time strategy games are a challenging scenario for intelligent decision making algorithms and human

gameplay simulation. In this thesis we examine the state of the art of useful AI techniques to apply in

RTS games such us: steering behaviours, potential �elds, decision trees, �nite state machines, threat

maps, real-time multi agent systems and the blackboard architecture. For that purpose, we designed and

implemented an AI bot (Nova) for Starcraft: Brood War, a military science �ction real-time strategy

video game developed by Blizzard Entertainment. Nova uses a multi agent system to divide tasks in

micro management tasks which controls a large-size army with di�erent abilities (tactical decisions) and

macro management tasks, which take decisions about economy, building construction and technology

research (strategy decisions).

We want to prove that by performing an immersion in the knowledge of the domain and implementing

some of the latest AI techniques, we can improve the built-in AI of the game, beat other bots and be a

real challenge for a human expert player.

Keywords: Real-Time MAS, Working Memory, Balckboard, Threat Map, Potential Fields, FSM,

Flocking, Path�nding, RTS

ii

Contents

1 Introduction 1

2 Introduction to Real Time Strategy Games 3

2.1 History . 3

2.2 Gameplay . 4

2.3 Challenges for AI . 5

2.4 Case of Study: Starcraft . 6

3 State of the Art on RTS AI 7

3.1 Terrain Analysis . 7

3.2 Unit control . 8

3.2.1 Path�nding . 8

3.2.2 Flocking . 10

3.2.3 Reciprocal velocity obstacles . 10

3.2.4 Potential �elds . 11

3.3 Decision Making . 11

3.3.1 Decision Trees . 12

3.3.2 Finite State Machines . 12

3.4 Opponent modelling . 13

3.4.1 Threat map . 13

3.5 Real-time multi agent architecture . 13

3.5.1 Working memory . 14

3.5.2 Blackboard . 14

4 Implementing a Starcraft Bot: Nova 15

4.1 How to interact with Starcraft . 15

4.2 Architecture overview . 16

4.2.1 Managers and Agents . 17

4.3 Working memory . 19

iii

iv

4.3.1 Terrain Analysis . 19

4.3.2 Opponent modelling . 20

4.4 Micro management . 23

4.4.1 Squad Agent . 24

4.4.2 Combat Agent . 26

4.5 Macro management . 29

4.5.1 Gathering resources . 30

4.5.2 Spending resources . 31

4.5.3 Strategy . 34

4.6 Debug . 36

5 Experimental Evaluation 39

5.1 Individual Agent Evaluation . 39

5.1.1 Experimental Procedure . 39

5.1.2 Experimental Results . 40

5.2 Global Nova Performance . 42

5.2.1 Experimental Procedure . 42

5.2.2 Experimental Results . 43

6 Conclusions and Future Work 49

Chapter 1

Introduction

In the past decade the popularity of computer games has increased greatly and the revenue of the

gaming industry exceeds now multiple billions of dollars[1]. In most games, the player expects the game

AI to be able to work towards long-term goals by performing intelligent decision making. In the genre

of real-time strategy (RTS) games, AI agents must reason at several levels of coordination, making

intelligent high-level strategic decisions while simultaneously micromanaging units in combat scenarios,

acting individually and/or cooperatively. Designing a real-time AI is complex, and this complexity is

increased if we want to apply it to non-deterministic domains like RTS games.

In RTS games, playing against other humans is much more popular than playing against the arti�cial

opponents. One of the main reasons is because commercial producers of RTS games have not been able

to create games with a challenging enough arti�cial intelligence without spending a large amounts of

resources.

The goal of this thesis is to design a real-time multi agent systems-based AI that can combines

several state of the art AI techniques for di�erent aspects of the game. Speci�cally, we created an AI

bot for a popular commercial RTS, which improves the built-in AI and is a real challenge for human

players.

The main tasks performed to achieve our goal have been:

• Select an appropriate RTS game as out testbed.

• Analyze all the di�erent techniques and the state of the art in game AI.

• Select the most useful techniques and algorithms for an RTS games.

• Do an extensive study of the existing domain knowledge for the RTS of choice.

• Design a multi agent system that controls the di�erent aspects of the game.

• Implement the designed AI, called Nova.

1

CHAPTER 1. INTRODUCTION 2

• Evaluate the performance of our AI by running a set of experiments against the built-in AI, and

participating on di�erent international competitions of RTS AI bots.

The rest of this monograph is organized as follows. Section 2 brie�y summarizes the history of the

Real Time Strategy genre, and gives the reader a context of our research domain and the main mechanics

of this type of games. We also remark the challenges in this scenario for AI research. In Section 3 we

present a literature review of the research related to game AI techniques that can be applied in RTS

games. This state of the art shows how to solve some problems present in all modern RTS games. Then,

in Section 4 we present the design of our real-time multi agent system, Nova, and how to assemble most

of the techniques seen on the previous section. Furthermore, we explain how to exploit the well known

strategies used by professional players. Then, in Section 5 we present our experiments and the results of

our bot in an international competition for RTS AI bots. We �nish the master thesis with conclusions

and how this research can serve as the starting point for future work.

Chapter 2

Introduction to Real Time Strategy

Games

Real Time Strategy (RTS) is a video game genre where a player plans a series of actions against one

ore more opponents to achieve victory, and where actions are executed in real-time. This means that

the action in the game is continuous, so the player must think and act quickly in a constantly changing

world.

In most strategy video games, the player is given a godlike view of the game world and takes control

of all their game units. These games challenge the player's ability to explore, manage an economy and

command an army. Additionally, the player's attention is divided into many simultaneous tasks, thus,

RTS games are considered hard to master.

In a RTS game the opponents can be other humans or computer AIs, and it is in the latter where

we will focus our interest: the process of developing a computer AI player.

2.1 History

The concept of Real Time Strategy game is generally traced back to Dune 2, released in 1992 by

Westwood Studios and based on the Dune universe from the series of science �ction novels by Frank

Herber. Certainly, this is not the �rst RTS game, but Dune 2 de�ned many of the major elements

that now make up the RTS genre. Figure 2.1 shows the game with 2D graphics and a point-and-click

graphical user interface.

3

CHAPTER 2. INTRODUCTION TO REAL TIME STRATEGY GAMES 4

Figure 2.1: Dune 2 game screenshot

It was the �rst to introduce a true real-time aspect in a moment where all strategy games implemented

a turn-based system like Civilization. As ign.com described

Dune II put a ticking clock into turn-based action and changed strategy gaming forever[2].

Some other key features introduced by Dune 2 are the ability to control the construction of a base,

the need to gather resources and the inclusion of three races, each with speci�c and unique features.

2.2 Gameplay

There are some gameplay concepts present in all RTS games. Here we will describe the main

characteristics most RTS games share.

• World representation. The game plays in a two-dimensional grid of tiles called map. We do

not have a �xed map size, and depending on the game we can �nd several di�erent map sizes.

Another important concept of RTS games is the Fog of War. Unexplored regions of the map for a

given player are hidden behind darkness. Each unit has a range of vision and a zone is considered

explored if it is in range of vision for any of the player's units. Explored regions become fully

visible and they do not go back to darkness again even if they become out sight of friendly units,

instead, a lighter fog covers that area, allowing the player to see the map, but not any enemy units

present in that area. Figure 2.2 illustrates the Fog of War concept.

CHAPTER 2. INTRODUCTION TO REAL TIME STRATEGY GAMES 5

Figure 2.2: Fog of War

• Obtaining resources. In this type of games we need to harvest on-map resources in order to

purchase units. We can gather one or more types of resources (like gold, minerals, gas, wood,

etc.).

• Building bases. Another typical concept is the possibility of building a mini city where each

building has special functions and/or are needed to train units for the army.

• Researching technologies. We have the option to improve our units doing research. Often

we will �nd a technology tree with dependencies between each research line. Performing research

typically requires a long time or a large amount of resources, but it gives access to important

upgrades for the units, or even to new unit types.

• Producing units. The last concept is the ability of produce di�erent type of units with di�erent

unique characteristics. Normally we can choose between several races and each race has di�erent

types of units. This variety adds a lot of design complexity, since each race must be balanced and

all units of the game must follow the pattern "rock, papers, scissors" to have a natural equilibrium

(i.e. there should not be any dominant type of unit, in order for interesting strategies to arise).

2.3 Challenges for AI

Over many years, game AI research has been focused on turn-based games like Chess. RTS games,

however, o�er a more complex scenario with many di�erent problems, where an elegant solution is

needed. One of the biggest challenges is how to deal with a non-deterministic world, since we do not

know what our opponent is doing, in a real-time context. RTS games pose several interesting questions

to the research community:

• How to build a multi-agent system capable of reasoning and cooperating in a real-time environ-

ment. Building a multi-agent system can be a a complex task if we want each agent to take

CHAPTER 2. INTRODUCTION TO REAL TIME STRATEGY GAMES 6

decisions and perform tasks as soon as possible within a time constraint. Executing tasks in real-

time, means that we do not have the time we want to search the best decision for every case, we

must respond quickly to any external stimulus. And all of this in a cooperative way, so a clear

and e�cient communication is very important.

• Concurrent and adversarial planning under uncertainty. In order to win the game, each agent has

to take the right decision in a high level plan. This kind of planning becomes hard when we have

uncertainty about our opponent, and tasks like learning and opponent modeling can help.

• Spatial and temporal reasoning. Not all the knowledge is generated on-line, we can analyse the

map before the game starts and make tactical decisions o�-line. But during a game, we have to

adapt some decisions under situations where the questions 'when' and 'where' are the key to win.

2.4 Case of Study: Starcraft

We did our experiments on the popular military science �ction RTS game Starcraft: Brood War,

released in 1998 by Blizzard Entertainment. Starcraft is set in a science-�ction based world where the

player must choose one of the three races: Terran, Protoss or Zerg. The good work done by the people

of Blizzard makes this game one of the most extremely well-balanced RTS games ever created.

• Terrans, human exiled from Earth, provide units that are versatile and �exible giving a balanced

option between Protoss and Zergs.

• Protoss units have lengthy and expensive manufacturing process, but they are strong and resistant.

These conditions makes players follow a strategy of quality over quantity.

• Zergs, the insectoid race, units are cheap and weak. They can be produced fast, encouraging

players to overwhelm their opponents with sheer numbers.

With more than 9 millions of copies sold worldwide in early 2008, it is the best-selling RTS game ever.

Stracraft is extremely popular in South Korea, where 4.5 millions of copies have been sold only in this

country. The in�uence of Starcraft is so big that in South Korea are professional leagues with sponsored

teams and professional gamers wearing trendy F1-style leather sportswear. The average salary for a

2010 Starcraft player is $60,000, where the average South Korean earns $16,296[3]. Korean players are

famous for their high speed control of the keyboard and the mouse, achieving an average APM (actions

per minute) of about 360 through a single game, that is an incredible six unique orders every second.

Chapter 3

State of the Art on RTS AI

In this section we will review the current state of the art on RTS game AI. Since there is a huge

number of di�erent techniques available on game AI today, we only cover those relevant to RTS games.

3.1 Terrain Analysis

Terrain analysis supplies the AI with chunks of abstract information about the map in order to help

in making decisions. Terrain analysis can provide automatic detection of regions, choke points and other

areas of interest. This analysis is usually performed o�-line, in order to save processing time during

gameplay.

The �nal goal of terrain analysis is having all the useful tactical information of the map. To do this

we can use di�erent algorithms, one of the most used, coming from computer vision, being skeletons

by in�uence zones, also known as Voronoi diagrams[4]. Through this kind of diagrams we will be able

to generate a graph with the centroid of the regions and the choke points of each region. Figure 3.1

illustrates the �nal graph of regions and choke points in a Starcraft map. Red dots are the centroid of

the regions, blue dots are the center of a choke point and green lines represent the connected regions;

the di�erent tonalities of browns are the di�erent levels of the map.

7

CHAPTER 3. STATE OF THE ART ON RTS AI 8

Figure 3.1: Starcraft map with regions and choke points

Another common technique is the utilization of an in�uence map to detect and mark relevant zones

of the map as resources location. More info about in�uence maps on section 3.4.1

3.2 Unit control

Unit control involves the ability to move units in a way that makes them more e�ective individually,

whether in dealing damage, avoiding damage or achieving e�ective movement. In RTS games often

we have to deal with a large number of units. For an optimum motion, they need to coordinate their

movement behavior while ensuring safe navigation in complex terrain. In this context, units will avoid

obstacles and other units.

3.2.1 Path�nding

The most common path�nding algorithm is A*, which can be a great improvement over Dijkstra

algorithm with the right heuristic. The key idea of A* is the use of a best-�rst search algorithm to �nd

the least-cost path given an initial node and a goal node. The path cost between nodes is the distance

plus an heuristic function. Figure 3.2 illustrates the node cost and the �nal path to go from green tile

to red tile. Figure 3.3 represent the same exercise in the Starcraft domain.

CHAPTER 3. STATE OF THE ART ON RTS AI 9

Figure 3.2: A* example

Figure 3.3: A* in Starcraft

But the big problem of this algorithm is the time and memory consumption, a show-stopper in a

real-time environment.

To solve this the search space needs to be reduced as much as possible. One common technique is

reducing the tile map search into a navigation graph map. To do this some polygonal triangulations

are calculated and abstracted on a grid-based map and this is the TRA* (Triangulation Reduction A*)

algorithm[5]. Figure 3.4 represent a a navigation mesh and a navigation graph with a path connection

points A and B using TRA*.

CHAPTER 3. STATE OF THE ART ON RTS AI 10

Figure 3.4: Navigation mesh and navigation graph examples

3.2.2 Flocking

Craig Reynols introduced algorithmic steering behaviors to simulate the aggregate motion of swarms

using procedural animation[6]. His model describes how a system of multiple agents , each steering

according to simple local rules, can produce the collective movement found in �ocks of birds. That model

consists of three simple rules for each agent: Separation (keep a distance to neighboring �ockmates),

Alignment (adjust the facing direction and speed to match with local �ockmates), and Cohesion (steer

towards the average position of neighboring �ockmates). Figure 3.5 represents each of these rules.

Figure 3.5: Flocking rules examples

With this behaviours we are able to simulate intelligent squad movements and do tactical moves to

�ank the opponent in a RTS game[7], improving the survival of our units.

3.2.3 Reciprocal velocity obstacles

A good alternative to Flocking is using Reciprocal Velocity Obstacles (RVO)[8], since it is easier to

control the behaviour and they guarantee to prevent collisions. The key idea of RVO is to share the work

CHAPTER 3. STATE OF THE ART ON RTS AI 11

required to avoid a collision among participating agents, this means that we are implicitly assuming that

the other agents will make a similar collision avoidance reasoning. For example, imagine we have two

agents A and B heading to each other, then the agent A will do only half of the e�ort to avoid a collision

to B, and assumes that agent B will take care of the other half. Figure 3.6 shows agents avoiding collision

with a 50% of e�ort for each one.

Figure 3.6: RVO example of 50% of e�ort for each agent

With this algorithm we can move a large squad crossing another squad and avoid all possible collisions

between units. This type of techniques are already applied in commercial RTS games like Starcraft 2[9]

and Supreme Commander 2[10] with great success.

3.2.4 Potential �elds

Basically, Potential Fields work like a charged particle moving through a magnetic �eld. The idea

is to put a charge at an interesting position in the game world and let the charge generate a �eld that

gradually fades to zero with distance. Each force �eld either has a positive (attractive) or a negative

(repulsive) electric charge. That is a reactive approach, where the agent will constantly have to remain

extremely vigilant to new changes in the environment and therefore the entire route from start to the

goal is not planned ahead.

The process of tuning and optimizing the parameters of potential �eld charges can be time reduced

applying learning algorithms such as Q-Learning[11]. Another common issue we have to deal with when

using potential �elds is the local optima problem that can stuck the unit away from the goal. Some

examples of the utilities of potential �les in RTS games are avoiding obstacles (navigation), avoiding

opponent �re, or staying at maximum shooting distance[12].

3.3 Decision Making

When a marine is attacked by an enemy unit, it can choose to retreat or retaliate. A human player

or some sort of AI agent, must make this decision. In order to take the best action we have to consider

all the information in the current game state.

The following sections present some of the most common decision making techniques in game AI.

CHAPTER 3. STATE OF THE ART ON RTS AI 12

3.3.1 Decision Trees

A decision tree is a decision support tool that uses a tree-like graph where a root is a decision point

and leafs nodes describe the actions to be carried out. To decide which action to perform, we start at

the root and follow the path led by each decision point's answer. When we ultimately arrive at a leaf

node, we have found the desired action to perform.

Some of the advantages of the decision trees are: simple to understand and interpret acting like a

white box where we can explain why a decision is taken, and they are compatible with other decision

techniques.

For complex decisions we have many algorithms to generate an optimum decision tree like ID3 or

C4.5, depends on the problem we will use one or another. We call a decision tree which needs the least

information to take the right decision an optimum decision tree.

3.3.2 Finite State Machines

A FSM is a model which is composed of a �nite number of states associated to transitions. While

an agent is in a state, it can work on a set of inputs and either perform some actions de�ned on the

state, or transition to a new state. The idea behind �nite state machines is to decompose an object's

behavior into easily manageable "chunks" or states, such as "attacking an enemy", "gathering resources"

or "repairing" and establish the conditions that trigger transitions between them.

Usually, the state transition occurs when a set of speci�c input conditions, called triggers, are met.

This is like �icking a switch for an ordinary light bulb. If the light is on when the switch is �icked, it

allows electricity to �ow through the system (input), the light is turned on (action) and the current state

is changed to "On" (state transition). Figure 3.7 illustrates this example of a light behaviour.

Figure 3.7: FSM of a light behaviour

CHAPTER 3. STATE OF THE ART ON RTS AI 13

3.4 Opponent modelling

Opponent modelling is the process of keeping track of what the enemy is doing during a game in

order to estimate the probability of it using a speci�c strategy. The key point here is to predict what

units the enemy will build, when he will build them, when and where he will attack and so on. This will

give us information about what kind of opponent it is allowing us to adapt our strategy and select the

best counter.

Science we are dealing with imperfect information, the best solution is to build a Bayesian model

which can deal perfectly with the uncertainty. The di�cult part is building that model. Some approaches

use traces of game logs to analyze the state of the world, but those traces have all the information of the

game, so we have to add some noise to emulate the real use of the model in a non-deterministic world.

3.4.1 Threat map

A Threat Map or In�uence Map is a way to store relevant information about the opponent and keep

track of the con�ict areas or the secure ones. Statical threat maps can be designed where the threat is

always "real" or concepts like heat map over time can be applied to make predictions.

Another decision we must take designing this type of maps is the spatial partition. A map with a

high de�nition can be computationally non-viable on real-time environments, but a low de�nitions can

fall in a poor information precision making it useless for taking decisions. Figure 3.8 shows two ways of

spatial partition on threat maps, the left part is a 2D tile partition while the right part is an area graph

partition.

Figure 3.8: Di�erent ways of spatial partition on threat maps

3.5 Real-time multi agent architecture

There is a lot of literature about multi agent system, but we have the constrain of a real-time

environment, therefore we will focus in systems capable to deal with that. In such environments, agents

need to act autonomously while still working towards a common goal. These agents require real-time

CHAPTER 3. STATE OF THE ART ON RTS AI 14

responses and communication among agents must be controlled to avoid performance penalties. So an

e�cient communication layer is our priority.

3.5.1 Working memory

The working memory is a shared place with a collection of facts. When a sensor's agent discovers

something about the world it deposits a fact in the working memory. Then if an agent is looking for

information about the world, it searches all valid working memory facts looking for the best fact which

is used to help in making a decision or execute an action. The bene�t of using the working memory is

that it allows the storage of results (caching) so sensors may not need to be run every frame; they can

be delayed (distributed processing).

A fact can have a degree of belief that represents the level of con�dence that something exists in the

world. For instance, if an enemy unit is in the agent's range of view then a working memory fact of type

Enemy would be created with a belief of 100%. If the enemy was obstructed or not seen in some time

the belief of the fact would be lower.

3.5.2 Blackboard

A blackboard helps us in the process of agent communication, instead of a complex message passing

between all agents, a blackboard centralizes all the useful information that agents want to exchange. So,

in a blackboard anyone can read information at any time and all agents can write their intentions or

desires. This de�nition is that of dynamic blackboards, where the information changes at run-time, but

static blackboards can also be build.

In conclusion, the main advantage of the blackboard is that it provides modularity; the di�erent

agents do not depend on each other, instead they just exchange the data via the blackboard. This

reduces the level of coupling between the di�erent behaviors, which makes the system easy to work with.

Now, when an agent needs querying for a certain information, it does not need to ask several agents,

but just search directly the answer in the blackboard making the communication process more clean and

sustainable in a real-time process.

Chapter 4

Implementing a Starcraft Bot: Nova

In this section we will describe how Nova has been designed. First we will give a global view of the

architecture and agents we used. Second we will describe the complexity of each agent in more depth.

4.1 How to interact with Starcraft

Since Starcraft is a commercial game, we do not have access to the source code in order to modify

or extend it. Fortunately there is a solution called Brood War Application Programming Interface

(BWAPI) that makes the dirty job for us. BWAPI can be loaded from the Chaos Launcher application

which launches a Starcraft instance and injects the BWAPI into the game's process. Then we can extend

BWAPI with our own DLL to interact directly to the Starcraft game. Figure 4.1 illustrates this process.

15

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 16

Figure 4.1: How BWAPI works

BWAPI also provides a modi�ed Chaos Launcher which can execute multiple instances of Starcraft

(with BWAPI injected), which is perfect for test di�erent bots in the same computer.

4.2 Architecture overview

The main tasks in Starcraft are micro management tasks and macro management tasks, and in order

to make the right decision the bot needs the maximum information possible about the enemy. Having

this in mind, we designed Nova as a multi-agent system with two main types of agents: agents and

managers.

• Managers: managers are in charge of persistent tasks, like build-order, for which we only need

one instance of each type manager type in Nova.

• Agents: regular agents are in charge of military units and squads, and new agents can be spawned

or killer when Nova creates or loses military units.

Each agent has a speci�c knowledge of the domain and they are capable to do atomic tasks. Some agents

can make decisions about higher level concepts, while others are lower level. One of the big advantages

of having a multi-agent system is the capacity to process di�erent problems in parallel. In a RTS game,

unlike in a turn-based game like Chess, we have to do actions in real-time. This means we are always

performing tasks, in a more or less planned way, but we do not want to stay idle. The cooperation

between the agents makes planning and execution of complex behaviours possible.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 17

One of the issues designing a multi-agent system is the way in which agents communicate. Selecting

the wrong structure can lead to a unsustainable and complex communication architecture. To address

this problem the best way possible, we decided to build a blackboard architecture to make the commu-

nication easier. To achieve this, we included an Information Manager, which has the Blackboard and

Working Memory functionalities. Nova uses the blackboard to store all the intentions (plans) of each

agent, while the working memory is for saving all the information about the state of the game. Most

agents communicate through this blackboard, however, there are some exceptions with some hierarchical

agent messages. This is so, because the micro agents have a military organization, so they have a natural

hierarchical organization: A Combat Agent (soldier) is commanded by a Squad Agent (captain) and this

is commanded by the Squad Manager (general). However, even those agents also access the blackboard

and working memory.

Figure 4.2 illustrates the multi-agent architecture with the blackboard and working memory. On

the right hand side of the �gure there is a Starcraft instance, on the left hand we can see Nova with

two blocks of agents that interact with the Information Manager and the sensors of each agent saving

information directly to the Working Memory.

Figure 4.2: NOVA global architecture

4.2.1 Managers and Agents

We de�ned di�erent generic modules, composed of managers and agents. Figure 4.3 shows the

modules of Nova and the area to which belongs.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 18

Figure 4.3: Nova modules overview

Generic modules

• NovaAIModule: Has the main loop of our bot and receives all the callbacks from BWAPI.

• EnhancedUI: Draws on the screen a lot of useful information on the screen to make more easy

the debugging tasks during the bot execution.

Information retrieval

• Information Manager: Stores all the relevant information about the game (map, enemies,

resources, threats, �) and accepts requests from the desired actions of the agents.

Micro Agents

• Squad Manager: Controls all the military squads of the bot, giving orders and receiving requests.

• Squad Agent: Controls all the units in the squad with di�erent behaviours for each state.

• Combat Agent: Controls the behaviour of a military unit to optimize its abilities.

Macro Agents

• Build Manager: Executes the build order list and �nds the best place to construct.

• Worker Manager: Controls all the workers to keep gathering and to do special tasks like building

or scouting.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 19

• Production Manager: Takes care of training new units or researching new technologies.

• Planner Manager: Monitors the army composition and balance the production order.

• Strategy Manager: Taking in count the type of enemy (Opponent Modelling), decides the build

order and base army composition.

4.3 Working memory

In order to store all the facts of the game, we used the paradigm of a working memory. As we

explained in Section 3.5.1, this is a shared memory where all agents can access to read the state of the

world and write useful information detected by agent's sensors.

In the following subsections we will explore the most important sensors for our domain. We will

explain how the agents gather information and how important it is in order to take further decisions.

4.3.1 Terrain Analysis

We showed the RTS concept of "fog of war" or unexplored terrain, but in a Starcraft game both

players may have a previous knowledge of the map and they may know how to move through the map.

Human players study the di�erent maps before playing a game, in order to choose the best strategy. In

other words, they do not need to explore the terrain to know it.

This is a di�erent concept from Chess, which is always played in an 8× 8 board. In a RTS we can

play in many di�erent maps with a variety of sizes, furthermore, in Chess, the pieces (units) have no

inherited advantages based on where they are, aside from the tactical and strategic value of holding

territory. On the other hand, in Starcraft, it is possible to have a higher ground, so units can acquire

terrain tactical advantatge.

For all of these reasons, it is important to perform terrain analysis before starting the game.

As we saw in section 3.1 there are several algorithms to analyze maps. Our main goal is collecting

the regions and choke points of the map. And for our concrete domain, we need to detect where the

resources are, to identify the best locations to place a base.

To do this analysis, we used the open source library BWTA (Brood War Terran Analysis). This

add-on uses Voronoi diagrams to identify the regions of the map and it is able to store the analysis in a

XML �le in order to avoid re-analyzing the whole map again when the same map is played repeatedly.

In Figure 4.4 we can observe the analysis result of a typical Starcraft map. On the left hand we have

an screenshot of a Starcraft map, and on the right hand we can see the same map divided by regions,

represented by di�erent colors, and the choke points of each region after the analysis.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 20

Figure 4.4: Terrain analysis of a Starcraft's map

With this information we are able to determinate the best locations to expand our base, make

predictions about where our opponent will expand and identify which are the most important bottlenecks

of the map. It can also be useful to improve path�nding.

4.3.2 Opponent modelling

Another problem bots has to deal with in RTS games is imperfect information. For example, in

Chess both players know what their opponent is doing and they can make predictions about what their

opponent is planning. However, in Starcraft the player is only aware of the visible terrain, so it is

impossible to know what an opponent is doing at every moment. This makes planning harder.

To solve this issue, opponents need to be scouted in order to get an idea about their plans. There are

three di�erent races in Starcraft (Terran, Zerg and Protoss), each one of them with di�erent abilities,

which allow for radically di�erent scouting strategies. Therefore, the proper way to manage the scouting

task depends on the speci�c race. In our case we decided to develop a Terran bot, therefore we have two

options:

• Sending a unit to scout. This is a common practice to gather information about the enemy.

The most extended is sending a worker to look for the enemy base early in the game. This has

two functions, �rst we want to discover the starting location of the opponent, second we want to

try to predict the initial build order and possible strategies that our opponent will take.

• Using the scanner sweep ability. Building a Comsat Station, Terrans have the ability to scan

any map location and reveal a little area during 10 seconds. With this ability we can monitor all

the enemy expansions. Firstly we have to scan all the empty base locations to detect the moment

when an enemy expands. Secondly we have to monitor all enemy bases to predict technology

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 21

development and army composition. Another thing we have to keep in mind is reserving some

energy to use this ability on cloaked enemy units, since the scanner sweep can reveal hidden units.

With the proper scouting abilities, Nova can gather su�cient information to make a opening prediction.

In Starcraft context, we de�ne an opening as the initial build order (the �rst buildings to be constructed

at the beginning of the game), which is similar to the the idea of Chess openings.

It is quite usual to build a model to predict the opponent's opening. The usual way to do this is

using a learning algorithm on Starcraft's replays (game logs)[13][14]. Although this has two problems,

�rst we need to de�ne opening labels and assign it to replays, we can �nd documentation about the most

usual openings, but these openings are basic and there are a lot of variations and unusual openings; and

second in a replay we have complete information, so we have to simulate incomplete information if we

want to obtain an accurate model that can be used later during a real game.

In fact, the reason to predict opponent's opening is to plan the best counter strategy. Although this

can be dangerous if we trust our prediction too much and the opponent shows us a fake opening.

In conclusion, due the complexity of building a good opening model and the questionable usefulness

of this model, we decided for a simpler approach, consisting of detecting only the extreme openings that

indicate the opponent is using a rush strategy. This kind of strategies are very aggressive and often are

all-in. They try to attack as soon as possible but if we manage to hold back the attack, our enemy will

be defenseless.

The last important piece of information Nova gather about an opponent is their army composition

and their threat. To do this, Nova saves every seen enemy unit during the game until that unit is

destroyed. As we said this has two purposes, �rst we want to know the air/ground damage per second

of the enemy army, and second, the damage per second on every tile to build a threat map.

We calculated the DPS of air and ground damage for both players using the next formula:

DPS =

unitsSize∑
i=1

(weaponDamagei ×
24frames

weaponCooldowni
)

And to know the hit points of an army, we used the next formula:

HP =

unitsSize∑
i=1

(shiledi + hitPointsi)

We also extracted other indicators from this information to take decisions like the "time to kill". For

instance, if we want to know how much time we need to kill all air enemy units we can use the next

formula:

timeToKillEnemyAir =
enemyAirHP

ourAirDPS

Now with all of this information we can take decisions at di�erent levels, for example, we can decide the

best unit to produce or, in case the squad has no options to win, make it retreat. On the other hand,

the threat map is useful to detect the most dangerous areas or to �nd a save spot to retreat to. Through

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 22

this threat map we can also simulate the use of potential �elds giving a virtual range to a melee unit.

For example, we used this technique to create a potential �eld on Zealots (a melee Protoss basic unit)

in order to repel Vultures and keep them in a safe attack range. In Figure 4.5 we can see the debug

information of our threat map, each tile with a number is the value of "ground threat", in other words,

the ground DPS on that tile. We also can observe the Vulture �ee movement to the cyan dot.

Figure 4.5: Starcraft screenshot with threat map information

Table 4.1 summarize the information gathering and the usefulness of this information.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 23

Gathering task Usefulness

Initial scout with a unit
Enemy start location

Detect rush strategy

Scanner sweep scanning Detect target locations

Enemy air/ground DPS Decide to build anti-air units

Threat map
Path�nding to save location

Avoid dangerous regions

Table 4.1: Gathering tasks and usefulness

4.4 Micro management

Micro management is the ability to control individual, normally combat, units. The agents respon-

sible of this task are SquadManager, SquadAgent and CombatAgent.

As we explained before, these three agents follow a military organization, Figure 4.6 illustrates this

hierarchy. The SquadManager can create and delete new SquadAgent instances and assign CombatAgent

instances into the squad, also it can take important decisions like selecting target locations, when and

where a squad has to retreat, assigning enemy units to a squad or deciding when merge two squads

together.

The SquadAgent controls the behaviour of the squad with a simple �nite state machine with states

like Attacking, Moving or Merging.

The CombatAgent controls one combat unit, each unit has its abilities and properties and they must

to be used it in an optimum way.

Figure 4.6: Micro agents hierarchy

Figure 4.7 represents an instance of these agents. Green members are Combat Agents, blue ones are

the Squad Agents, and the red one is the Squad Manager.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 24

Figure 4.7: Example of micro agents instances

4.4.1 Squad Agent

We designed 4 states into our FSM: Idle, Get Position, Attack and Merge Squads. We have repre-

sented the state transitions in Figure 4.8.

Figure 4.8: FSM of the Squad Manager

Idle is the initial state of a squad. We de�ned a minimum squad size, when a squad achieves this

size, the Squad Manager assigns a target location to it and the squad state changes to "Get Position".

In some conditions an Idle squad can be selected to attack a nearby enemy or to merge with another

squad.

In Get Position the squad is trying to move to the target location �xed by the Squad Manager. In

this state we designed a group behaviour in order to move the squad in a compact way. To this purpose,

we used speci�c algorithms to cohesion the squad. The most basic of these algorithms is for a unit to

wait for more units to catch up if there are less than a minimum number in range. A more elaborated

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 25

one, is to calculate the centroid and the spread of the units of the squad. Then we have to calculate

a maximum and minimum spread depending on unit sizes. If the current spread is bigger than the

maximum spread we do a cohesion movement and if the current spread is less than the minimum spread

we can keep going towards the target location. Figure 4.9 illustrates the di�erent spreads calculated and

the centroid of the squad.

Figure 4.9: Spread debugging

If a squad reaches the target location, a new target is requested to the Squad Manager.

If an enemy is assigned to a squad, then the state changes to Attack. In this state the Sqaud Agent

evaluates the enemy force and if it cannot win it performs a retreat request to the Squad Manager. In

case it is decided to proceed with the �ght, we delegate each unit control to the Combat Agent. In the

scenario of having to retreat, the Squad Manager will assign another squad to merge with. Then we

will change the state to Merge Squads. In the other hand if we killed all the enemies we will go to Get

Position state.

In the Merge Squads state, we have to take care of moving towards the other squad assigned to

merge.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 26

4.4.2 Combat Agent

The Combat Agent controls a military unit during a combat. It has a common part to select the

best target, and it speci�c methods for each kind of unit, in order to take advantage of their special

abilities.

Target selection

Selecting the right target is essential to maximize the e�ectiveness of our attack, this can mean the

di�erence between win or losing a combat. The Combat Agent assigns a score to each target, the higher

the number the more priority a target has. To compute this score we decomposed the information in

three parameters: aggro, tactical threat and distance to target.

Score = Aggro×AggroWeight+ Tactical × TacticalWeight−Distance×DistanceWeight

We also assigned a weight to each parameter in order to control the relative importance of each of them.

The Distance is the pixel distance to the target.

The Tactical threat is a �xed value depending on the abilities or type of unit. See Table 4.2 for

details.

Tactical condition Value

Terran Medic 100

Terran SCV reparing 400

Worker 250

Detector (Science Vessel, Obersver) 100

Carriers of other units 400

Protoss Pylon or Shield Battery 50

Zerg Queen 100

Buildings that can produce units 200

Resource Depots 100

self �yer unit vs enemy ground weapon 2500

self air weapong vs enemy �yer unit 2500

Table 4.2: Tactical values

The Aggro is the result of the DPS that would be in�icted to the target by the attacking unit

(DPSToTarget) divided by the time to kill the target. We computed this using the following formulas

and algorithm:

Aggro =
DPSToUnit

timeToKillTarget

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 27

timeToKillTarget =
targetHitPoints

DPSToTarget

Algorithm 1 DPSToTarget(unit, target)

Require: An attacking unit and a target.

Ensure: A DPS value to target.

DPS = 0

if (targetIsF lyer AND unitAirWeaponDamage > 0) OR (!targetIsF lyer AND

unitGroundWeaponDamage > 0) then

DPS = unitWeaponDamage*(24/unitAirWeaponCooldown);

if unitWeaponDamageType == explosive then

if targetSize == small then

DPS = DPS*0.5

else

if targetSize == medium then

DPS = DPS*0.75

end if

end if

end if

if unitWeaponDamageType == concussive then

if targetSize == large then

DPS = DPS*0.25

else

if targetSize == medium then

DPS = DPS*0.5

end if

end if

end if

end if

return DPS

We adjusted the weights to make the magnitudes quite equivalent since we have di�erent concepts.

After some experimentation the �nal weights for our computation are:

AggroWeight = 10000;TacticalWeight = 1;DistanceWeight = 0.1

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 28

Now we have the best target to attack, but we have di�erent units with di�erent abilities, so we have to

control each one in a proper way.

Special micro management

We de�ned six special controllers for speci�c units:

• Marine micro management. If the stim pack1 is researched, Marines can use it if they have

enough hit points.

• Biological micro management. The biological units (Marine, Firebat and Ghost) will go close

to a Medic if there is any in the squad and the unit's HP is low (under half of the maximum hit

points).

• Vulture micro management. Vultures are a faster unit and they can increase their speed

researching an upgrade. For this reason, Vultures can keep an enemy unit at a certain distance

while dealing damage at the same time, specially e�ective against small melee units. To do this

tactical maneuver we emulated potential �elds through the threat map. Doing this, Vultures

can win against a large group of Zealots without taking any damage. The algorithm consists in

using the Patrol command near the enemy, which will trigger an attack, and retreating to a save

location as soon as possible. We used the Patrol command because has a shorter shooting delay

than Attack, and using the Patrol command in a 15 degree angle from the target, Vulture can

avoid turning around and losing retreat time. In Figure 4.10 the process of (1) retreat, (2) patrol

and (3) retreat again can be seen.

Figure 4.10: Vulture micro orders

1Using the Stim Pack abilitity, Marine and Firebat units double their rate of �re and increas their movement

speed for a limited period of time in exchange of 10 hit points.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 29

Researching the Spider Mines, Vultures gain the ability to lay mines. These mines can be used

to protect the tanks lines or being more aggressive surrounding medium size enemy units. In our

case, we modi�ed the previous algorithm to lay mines instead to patrol against medium size units,

but with the constraint of not laying mines too near between them.

• Wraith micro management. Wraiths have two basics moves. First, they will retreat to a safer

location while their weapon is in cooldown. To �nd this spot we used a spiral algorithm on the

threat map. Second, their cloaking ability. A Wraith will cloak if there is an enemy with air

weapons in attack range and no enemy detector is present, since a detector makes this ability

useless.

• Tank micro management. Tanks have the ability to change into siege mode. In this mode,

tanks have the best attack range in the game, but they are vulnerable while changing modes since

they cannot attack or move. Therefore, it is important to unsiege tanks at the right time. To

achieve this, we will check the following conditions to decide if a tank should switch to siege mode:

� We do not have any enemy in attack range.

� The last change to siege mode time is greater than 4×24 frames.

• Ghost micro management. Like Wraiths, Ghosts have the ability to cloak, so we will use this

ability if there are any enemy military unit near. And we will also use the Lockdown ability to

neutralize any mechanical enemy unit. Before using it we have to check if the unit is not already

Lockeddown or there are no Lockdown bullets for that unit.

• Science Vessel micro management. Science Vessels are the detector unit of the Terran. They

also have special abilities but in this �rst version of our bot we have focused on their natural

ability to detect cloaked units. Therefore, if any of our units detects an enemy cloaking we will

produce Science Vessels. The Science Vessel will stay near the unit most closest to the target

location and at the same time it will be away from anti-air threats.

4.5 Macro management

Macro management refers to the general economical aspects, or in other words, the way resources are

gathered and spent. This includes actions like constructing buildings, conducting research and producing

units. The goal here is to keep increasing the production capability while having the resources to support

it. Speci�cally, Macro management in Nova is divided into two main tasks: resource gathering and

resource allocation, where resource allocation consists in building constructions, researching technologies

and producing units.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 30

4.5.1 Gathering resources

The �rst important task in Starcraft is obtaining a su�cient income rate of resources. There are

two types of resources: minerals and gas; optimizing this gathering task is key in the game. In the

case of gas, the optimum number of workers per re�nery is well known: three. If more workers are

assigned to extracting gas the fourth worker will have to wait until the third �nish, so the income rate

will not increase. In the other hand, in the case of minerals the answer is not clear. It depends on

the distance between the Command Center and the expectations of building a new Command Center

transferring workers from one base to another. There are a few studies about this topic[15][16], but not

a �nal conclusion. In our case, we decided to use the formula 2 workers × mineral �eld, since this is

the minimal optimal value for all the existing studies. We established the optimal number of workers

for gathering, but this is not the only task that workers must do. They have to do tasks like building,

defending or scouting besides gathering.

Figure 4.11: Workers' FSM

The Worker Manager controls all the SCV (Terran workers) through the FSM shown in Figure 4.11.

Observing the FSM we can see that the initial state is "Gathering minerals" and only workers in this

state can be requested to do other tasks. When a SCV completes any other task, it will return to

"Gathering minerals" state, except for "Gathering gas" since this is a �nal task. State description:

• Gathering minerals. To enter in this state, the Worker Manager must select the mineral �eld

with lowest workers assigned. Once inside the state, we have to take care that the �eld does not

have any idle worker to keep up the incoming rate.

• Gathering gas. Very similar to "Gathering minerals", workers must be extracting gas at all

times.

• Building. When an agent wants to start a building, the closest worker to the building placement

is selected and changed to "Building" state. If the building placement is visible, the order of

building is direct, else we �rst have to move the worker to the destination place so that the target

position becomes visible before building can start.

• Defending. A worker enters in this state when our base is under attack (or under scouting) and

we do not have any military unit (combat agent). Since workers can also attack, they can be used

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 31

as a defensive force. We will return to the gathering state if we kill the enemy or the enemy goes

outside of our region, this is to prevent following the unit across all the map.

• Scouting. At the beginning of the game we will send workers to explore the multiple initial

locations of our opponent. When the enemy base is located, the worker will move around the base

in order to gather information about the initial build order of the opponent.

• Repairing. This is a special state because we have not de�ned it in our FSM. This is it because

it is a very tiny temporal state. When a building is damaged and there are no enemies near, the

closest SCV will repair the building. After �nishing the repair, the worker will be idle, but since

it is on "Gathering minerals" state it will resume gathering his mineral supply.

4.5.2 Spending resources

Gathering resources ensures an income rate, the resource spending task takes care of controlling the

outcome rate. We have three main di�erent ways to spend resources: building, researching technologies

and producing units.

Building

The initial build order will condition which units we can produce and also the technologies to research,

so this order is very important. We cannot build the buildings we want at any time since they have

dependencies between them. Figure 4.12 shows that dependencies for Terran buildings.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 32

Figure 4.12: Terran's technology tree

These dependencies are controlled by the Information Manager through the Blackboard. Each time

an agent requests a building to the Information Manager, it checks all the dependencies and sends the

request to the Build Manager. The Build Manager stores these requests in a FIFO list. This FIFO has

two exceptions to prevent blocking states:

• If we have the resources to build the top two buildings of the list, but the �rst one cannot be built

for whatever reason, we will issue the order to build the second one.

• There is the possibility to request critical buildings, in those cases the request will skip to the top

of the list.

The Build Manager also decides the buildings' placement. To do this we de�ned a two dimensional

matrix, with the same size of the tiles of the map, where we marked each point as buildable or not

buildable. First of all, we marked all the natural buildable tiles, then we blocked any tile with a static

element like a geyser. Each time a building is placed, we block the tiles occupied by the building. We also

reserve the right column and bottom row of any production building to be sure units can be spawned.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 33

Figure 4.13 shows the debug information of the build map, green dots represent buildable tiles, red ones

represent blocked tiles.

Figure 4.13: Build map information

To �nd the best build location, we designed an algorithm that, given a seed position, searches

outwards in a spiral for a non blocked location on the build map. A pseduo code can be seen in

Algorithm 2.

Algorithm 2 getBuildLocation(seedPosition)

Require: A seed location x,y.

Ensure: A build location x,y.

actualPosition = seedPosition

segmentLenght = 1

while segmentLenght < mapWidth do

if (buildMap[buildingSize] == buildable AND (buildMap[bottomBuilding] == buildable

OR buildMap[topBuilding] == buildable) AND (buildMap[leftBuilding] == buildable

OR buildMap[rightBuilding] == buildable)) then

return actualPosition

else

actualPosition = nextPositionInTheSpiral

end if

end while

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 34

With this algorithm we prevent any posibility of new buildings creating walls that block paths.

Some managers have been designed with auto build features. For instance, the Build Manager checks

on every frame if we need a supply depot to avoid blocking unit production.

Producing units

One of the keys in Starcraft is keeping the unit production constant, and this is the task of the

Production Manager, which takes the control of all buildings that can produce units and keeps them

busy. In Starcraft, unit training orders can be queued, but doing so spends resources that are locked

until the training really starts, so we decided not to use the queue functionality.

The Production Manager also has the ability of auto build more production buildings. If all buildings

of same type are training units and we have an excess of resources, in other words, we have resources

to train another unit, build a supply depot and build the production building, then the Production

Manager will request a new building by expressing its desires into the Blackboard.

The decision of what kind of unit we must train is taken by the Planner Manager. The Planner

Manager balances the unit production according to our plans. For example, we can set a desired army

composition of 60% marines and 40% medics and the Planner Manager will get the army rate most

closest as possible to these numbers.

Researching technologies

Some buildings can research new technologies in order to improve some units. Each time the Strategy

Manager sends a research request to the Product Manager, the latter puts unit training on hold until

the research is in progress.

This behavior is because we prioritized to build over to research and to research over to train. But

with the exception of workers since more workers means more resources, and thus training of workers is

never blocked.

4.5.3 Strategy

Finally, the Strategy Manager decides what strategy the other managers must follow in order to win

the game. The best strategy to use depends on the race against which Nova is playing. There are some

reactive strategies that are common for all enemies' race, but we designed a speci�c FSM encoding the

strategies to use against each race.

Reactive strategies

• Cloaked enemy detected. If a cloaked enemy is detected we will proceed to use the scanner

sweep, or to build a ComSat Station if we do not have any, in order to reveal the area where the

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 35

enemy is cloaked. In parallel, we will start working towards the requirements to train Science

Vessels.

• Gas steal. Sometimes our enemy will steal our gas at an early stage of the game. In those cases

we will try to kill the worker and the building as soon as possible.

• Defend base from scouts. If an enemy scout is in our base we will try to kill it as soon as

possible to hide our build order.

• Scan empty bases. Once we can use the scanner sweep ability, we will track all empty bases to

search for any enemy expansion.

• Need anti air units. We de�ned a threshold to the enemy air threat. If the time to kill all enemy

air units is bigger than 5 seconds we will keep training Goliaths (good anti-air units). Also, at

�rst enemy air unit detected we will start to build missile turrets in our bases (anti-air defenses).

FSM strategies

• Versus Terran. Against Terran we will try to have a good production of tanks with siege mode

researched. Thanks to initial scouting, we will detect if our opponent is performing a rush strategy,

in which case we will produce Vultures to resist any marine rush. Figure 4.14 illustrates the states

against a Terran opponent.

Figure 4.14: FSM against Terrans

• Versus Protoss. The Protoss strategy has three phases. First we will try to produce Vultures to

manage any Zealot rush with a kiting technique or lay mines against Dragoons (100% Vultures).

The second phase consists in changing progressively to a tank-centric production, from a 90%

Vultures - 10% Tanks, to �nally have a 25% Vultures and 75% Tanks army on the �nal state.

Figure 4.15 shows the di�erent states versus Protoss.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 36

Figure 4.15: FSM against Protoss

• Versus Zerg. Our Zerg strategy is quite simple since it only has one state. We designed a

standard "1 Barracks Fast Expansion" opening, so our army will be based on marines (80%) and

medics (20%) with stim pack researched and some upgrades for our infantry. Some Zergs use a

rush strategy consisting in sending a bunch of zerglings in an early attack. In those situations we

will order to our workers to attack the rush.

4.6 Debug

Debugging a real time agent system is a hard task. To help us, we designed several tools for doing

an online debugging and an o�ine debugging. The EnhancedUI provides us useful visual information

during the game. Each manager can print relevant information on the screen. In Figure 4.16 di�erent

blocks of information are show, which allow quick access to any issue during execution.

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 37

Figure 4.16: Starcraft screenshot with macro debugging

CHAPTER 4. IMPLEMENTING A STARCRAFT BOT: NOVA 38

Figure 4.17: Starcraft screenshot with micro debugging

In Figure 4.17 we can observe the debug info for each squad agent: the number of units in the squad,

the number of assigned enemies, the state of the squad and the target location of the squad.

In some cases we need more accurate info about what is happening, for those cases we designed a

persistent log �le system to be able to analyze any problem in a more detailed way.

Chapter 5

Experimental Evaluation

5.1 Individual Agent Evaluation

In this section we present our experimental results of applying the di�erent techniques on each agent

individually. Some of the techniques have several parameters that need to be set. Due to lack of time,

we were not able to deploy a machine learning system to automatically set the value of such parameters,

so we tested di�erent settings manually trying to converge towards optimum results.

5.1.1 Experimental Procedure

Experimental steps. For all micro experiments we used a simple balanced map without any terrain

advantage (see Figure 5.1) and we ran several games against the built-in AI in a prede�ned situation like

�ve vs �ve marines combat. For macro experiments we used maps from ICCup an International Cyber

Cup where players from whole world compete on-line against each others. We tested Nova against the

built-in AI and against other bots from AIIDE 2010 Starcraft Competition.

39

CHAPTER 5. EXPERIMENTAL EVALUATION 40

Figure 5.1: Starcraft map for our tests

Experimental platform. We ran all our experiments on a Windows Vista 32-bits, with Intel Core

2 Duo E8400 processor having a speed of 3 Ghz and 2GB of RAM.

5.1.2 Experimental Results

Path�nding issues

Even if we did not implement any path�nding technique, in our experiments we detected some issues

with the built-in path�nding. The issues appear when an indestructible building (de�ned in the map) is

walling a path to a target location. The built-in algorithm only checks that building if it is on an unit's

sight range, causing a blocking state where the unit is recalculating the best path to a location every

time the building becomes visible or hidden. This problem is very common when a worker is trying to

build a new base. In those cases we solve the problem de�ning a timer for a task, if the time is bigger

than a threshold, we request another build location. In Video 1 we can see the mentioned issue with the

time trigger solution:

Video 1: http://www.youtube.com/watch?v=nt2ZSDue9kM

E�ects of improving best target selection

We wanted to prove that in equal army forces, a better unit control can make the di�erence between

winning or losing a game. To test the impact of our implementation of a better target selection, we

ran several games in balanced custom maps. Our tests also showed us that tactical movement is very

CHAPTER 5. EXPERIMENTAL EVALUATION 41

important too, but with our improved target selection we can manage to win in all battles against built-

in AI. Video 2 shows how an army of marines and medics commanded by our bot can win the same

army commanded by built-in AI:

Video 2: http://www.youtube.com/watch?v=CFnNbttUleU

Avoiding damage

To test our bot micro capabilities, we designed a scenario to handle combats of a ranged unit against

a melee army. In our �rst iteration we tested a combat between one Vulture versus one Zealot without

Potential Fields and Nova lost a 100% of the games. In a second iteration we applied Potential �elds

achieving a 100% win rate. In our third iteration we tested the combat of 1 Vulture versus six Zealots

and we won half of the times due the poor target selection. In the �nal iteration we improved the target

selection and won 100% of the times Our results show that applying potential �elds to avoid damage is

a powerful technique. Video 3 shows our iterative experiments.

Video 3: http://www.youtube.com/watch?v=6QcEBFcMaBw

Adaptive Strategy

n order to evaluate our capacity to adapt the current strategy, we tested our bot Nova in three

di�erent common scenarios.

Gas steal is a strategy consisting in building a re�nery in the enemy geyser that makes a development

delay or a blocking state for a bot without adaptive rules. In our experiments, Nova shows a right

reactive planning against this strategy attacking the enemy's re�nery and building its own re�nery after

destroying the enemy one.

Stop an opponent rush. Some aggressive strategies need to be detected as soon as possible in

order to build a counter. In our tests against a typical BBS1 opening, we observed a good transition

between a normal state strategy training Tanks to a counter BBS strategy prioritizing Vultures to defeat

Marines. Doing this, Nova changed his win ratio from 0% to 100% against a BBS opening. This shows

the importance of a good initial scouting and a good adaptation to di�erent opponent strategies.

Enemy air force all-in. Another example of Nova's adaptive strategy is the capacity to do a good

opponent modelling to detect the enemy air threat. A quick detection of this threat, gives Nova time

to change its unit production preferences and build a good army composition to counter the enemy air

force. To test this capability we evaluated Nova against the AI bot Chronos (a participant in the 2010

Starcraft Game AI competition); we observed that without air-threat detection, Nova lost a 100% of the

games, while including this feature, the picture changed completely, and Nova managed to win 100% of

the times.

1A BBS opening consists in buildign two Barracks before a Supply Depot and doing a massive training of

Marines.

CHAPTER 5. EXPERIMENTAL EVALUATION 42

Video 4 shows the highlights of our tests with Nova dealing the strategies described.

Video 4: http://www.youtube.com/watch?v=2_GnbNocZ8g

5.2 Global Nova Performance

In this section we present our experimental results of Nova's performance in a full game against the

Starcraft built-in AI and other bots. To test Nova against other bots we participated on the following

tournaments:

• The 2nd Annual AIIDE Starcraft AI Competition

• CIG 2011 Starcraft RTS AI Competition

On time to writing this master thesis the CIG Competition is still on progress, so we have not been able

to include the results.

5.2.1 Experimental Procedure

Experimental steps. The map for each game in the competition was selected randomly between

10 maps (see Table 5.1 for details). And each bot played 30 games to each other to make the results

statistically signi�cant.

Map Name Players URL

Benzene 2 http://www.teamliquid.net/tlpd/korean/maps/407_Benzene

Heartbreak Ridge 2 http://www.teamliquid.net/tlpd/korean/maps/199_Heartbreak_Ridge

Destination 2 http://www.teamliquid.net/tlpd/korean/maps/188_Destination

Aztec 3 http://www.teamliquid.net/tlpd/korean/maps/402_Aztec

Tau Cross 3 http://www.teamliquid.net/tlpd/korean/maps/3_Tau_Cross

Empire of the Sun 4 http://www.teamliquid.net/tlpd/korean/maps/406_Empire_of_the_Sun

Andromeda 4 http://www.teamliquid.net/tlpd/korean/maps/175_Andromeda

Circuit Breaker 4 http://www.teamliquid.net/tlpd/korean/maps/404_Circuit_Breaker

Fortress 4 http://www.teamliquid.net/tlpd/korean/maps/390_Fortress

Python 4 http://www.teamliquid.net/tlpd/korean/maps/147_Python

Table 5.1: Maps of the AIIDE Starcraft AI Competition

Experimental platform. The tournament ran all the games on a Windows XP, with Intel Core 2

Duo E8500 processor having a speed of 3,16 Ghz and 4GB of RAM.

CHAPTER 5. EXPERIMENTAL EVALUATION 43

5.2.2 Experimental Results

Evaluation Against Starcraft's Built-in AI

On AIIDE competition we tested Nova performance against built-in AI. Figure 5.2 shows the results

after 250 games against each race, where we can observe an excellent performance against Protoss and

Terran but a lot of crashes against Zerg. This is because we have some bugs in our Squad Manager,

when handling squad merge in some special conditions. As we mentioned before, debugging a real-time

system is hard and, due the lack of time, we were not able to �x all bugs. So, as we can observe, the

main reason for losing games against Zerg is Nova's crashes.

Figure 5.2: Nova games categorized by built-in AI's race

Figure 5.3 shows the win rate in % against each race.

CHAPTER 5. EXPERIMENTAL EVALUATION 44

Figure 5.3: Nova win rate categorized by built-in AI's race

Results of the 2011 Starcraft AI Competition

Since Starcraft built-in AI always follows the same strategy, it is quite easy to design a winner strat-

egy. The other bots in a tournament represent a better challenge to evaluate Nova performance. Thirteen

di�erent bots from di�erent a�liations participated on AIIDE competition: six Protoss (UAlbertaBot,

BroodwarBotQ, EISBot, Aiur, SPAR and Skynet), four Terran (Cromulent, Quorum, Undermind and

Nova) and three Zerg (bigbrother, BTHAI and ItayUndermind).

After a total of 2.340 games, 360 for each bot, Skynet proclaimed as winner. Figure 5.4 represents

the �nal classi�cation with the win rate of each bot. Orange bars represent Protoss bots, red means

Zerg bots and Blue for Terran bots. Nova's �nal position was 8th, since our most tested strategy was

against Terran and most of the participants were Protoss, this is not bad result at all.

CHAPTER 5. EXPERIMENTAL EVALUATION 45

Figure 5.4: Final 2011 AIIDE competition standings

Next, we will analyze on detail all the statistical information to extract more conclusions.

One thing that can in�uence a lot the win rate is the robustness of the bot. During the competition

each time a bot crashes was counted as a loss, also they de�ned a timeout rule by which, if a bot

slowed down games by repeatedly exceeding 55ms on frame execution will lose the game. Figure 5.5

shows the crashes and timeouts of each bot. Notice there is only a little correlation between 'win rate'

and 'crash+tiemout', meaning that a considerable crash rate like UAlbetaBot's, did not impede a good

classi�cation result.

CHAPTER 5. EXPERIMENTAL EVALUATION 46

Figure 5.5: Bot's robustness

In Figure 5.6 we can see the individual results of Nova against each bot, where we can observe that

most of Nova crashes happened against Zerg bots (BTHAI and bigbrother) and all the losses against these

bots were only by Nova's crashes. Meanwhile, our best results were against Terran bots (Undermind,

Quorum and Cromulent); and we had a good performance against the second placed UAlbertaBot, which

used a Zealot rush strategy which our Vulture's kiting did a good job against.

CHAPTER 5. EXPERIMENTAL EVALUATION 47

Figure 5.6: Nova games against bots

Figures 5.7 and 5.8 shows the results categorized by bot's race where we can observe the great results

against Terran bots. In fact, Nova was the best Terran Vs Terran bot of the competition with a win rate

of 91%. We also can see the buggy performance against Zergs and the poor strategy developed against

Protoss.

CHAPTER 5. EXPERIMENTAL EVALUATION 48

Figure 5.7: Nova games categorized by bot's race

Figure 5.8: Nova win rate catgeroized by bot's race

Chapter 6

Conclusions and Future Work

Designing, implementing and debugging an AI for a RTS game is a complex task. AI bots have

to deal with a lot of individual problems that can ruin the good job done by the individual agents.

Mircromanagement tasks need a constant evaluation of the domain in real-time while using the static

information like terrain analysis to take any possible advantage in any situation. On the other hand

macromanagment tasks have to deal with a non-deterministic domain, forcing the agent to do predictions

under uncertainty and executing the plans that have the maximum chance of success. In this context,

designing a system capable of reactive planning, or replanning is a must if we want the strategy to be

adaptive to unexpected events.

Our decision to build a multi agent system with a Working Memory and a Blackboard has given

us good results on this real-time environment, but our crashes indicate that we need better tools for

debugging these kind of systems. Potential Fields raise as an e�ective tool for tactical decisions, but they

can be improved applying learning algorithms for better parameter tuning and they can be improved with

terrain information. We also observed that the unit control task can improve a lot the bot's performance

and trying to model all enemies behaviours is a hard task. Finally, using FSM as our main strategy

handler makes Nova easy to predict and less e�ective against unde�ned situations.

Nova has demonstrated to be a solid and quite robust real-time multi agent system capable of

performing the tasks required to play a RTS game. It is an improvement over the built-in AI of Starcraft

and can be a great opponent against Terran players.

For all of this, Nova is a solid starting point for a more sophisticated RTS AI. There is a lot of room

for improvements like:

• Implementing its own path�nding and path planning systems due the issues of the built-in ones.

• A better terrain analysis to detect invincible buildings as walls, and classify regions by their height.

• Coordinate squads to achieve joint goals.

• Exploit tactical locations to take advantage in combats.

49

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 50

• Improve the opponent modelling to make better predictions about build orders and next move-

ments.

• Test other techniques for planning like GOAP (Goal-oriented action planning).

• Design a learning system to emerge new AI behaviours and/or strategies.

• Better exploiting of all the special abilities and units of the game. Nova only knows how to control

8 of the 13 Terran's units. This can lead to new strategies.

• Use squad formations to �ank the enemy and test more squad movement behaviours.

• Make a study of what is the best number of workers and the best way to do expansion transitions.

Bibliography

[1] M. Buro, �Real-time strategy gaines: A new ai research challenge,� International Joint Conference

on Arti�cial Intelligence, pp. 1534�1535, 2003.

[2] IGN, �Pc retroview: Dune ii,� http://uk.pc.ign.com/articles/082/082093p1.html, 2000, [Online;

accessed 4-September-2011].

[3] �Starcraft in south korea,� http://www.onlinegraphicdesignschools.org/starcraft-in-south-korea,

[Online; accessed 4-September-2011].

[4] L. Perkins, �Terrain analysis in real-time strategy games : An integrated approach to choke point

detection and region decomposition,� Arti�cial Intelligence, pp. 168�173, 2010.

[5] D. Demyen and M. Buro, �E�cient triangulation-based path�nding,� Proceedings of the 21st na-

tional conference on Arti�cial intelligence - Volume 1, pp. 942�947, 2006.

[6] C. W. Reynolds, �Steering behaviors for autonomous characters,� Proceedings of Game Developers

Conference 1999, pp. 763�782, 1999.

[7] H. Danielsiek, R. Stuer, A. Thom, N. Beume, B. Naujoks, and M. Preuss, �Intelligent moving of

groups in real-time strategy games,� 2008 IEEE Symposium On Computational Intelligence and

Games, pp. 71�78, 2008.

[8] J. Van Den Berg and D. Manocha, �Reciprocal velocity obstacles for real-time multi-agent naviga-

tion,� 2008 IEEE International Conference on Robotics and Automation, pp. 1928�1935, 2008.

[9] �Starcraft 2 - beta - 350+ zergling swarm - 1080p - path �nding demo,� http://www.youtube.com/

watch?v=RfNrgymu41w, [Online; accessed 4-September-2011].

[10] �Supreme commander 2's �ow�eld path�nding system,� http://www.youtube.com/watch?v=

iHuFCnYnP9A, [Online; accessed 4-September-2011].

[11] L. Liu and L. Li, �Regional cooperative multi-agent q-learning based on potential �eld,� pp. 535�539,

2008.

[12] J. Hagelb, �A multiagent potential �eld-based bot for real-time strategy games,� International

Journal of Computer Games Technology, vol. 2009, no. 1, pp. 90�11.

51

BIBLIOGRAPHY 52

[13] B. G. Weber and M. Mateas, �A data mining approach to strategy prediction,� Proceedings of the

5th international conference on Computational Intelligence and Games, pp. 140�147, 2009.

[14] G. Synnaeve and P. Bessiere, �A bayesian model for opening prediction in rts games with application

to starcraft,� 2011.

[15] �Worker saturation,� http://www.teamliquid.net/forum/viewmessage.php?topic_id=83287, [On-

line; accessed 4-September-2011].

[16] �Ideal mining thoughts,� http://www.teamliquid.net/forum/viewmessage.php?topic_id=89939,

[Online; accessed 4-September-2011].

