
PSMAGE: Balanced Map Generation for StarCraft

Alberto Uriarte

Drexel University

Philadelphia, PA, USA

albertouri@cs.drexel.edu

Santiago Ontañón

Drexel University

Philadelphia, PA, USA

santi@cs.drexel.edu

Abstract—Designing a well balanced map for a real-time
strategy game might be time consuming. This paper presents an
algorithm, called PSMAGE, for generating balanced maps for the
popular real-time strategy (RTS) game StarCraft. Our approach
uses Voronoi diagrams to generate an initial map layout, and then
assigns different properties to each of the regions in the diagram.
Additionally, PSMAGE includes a collection of evaluation metrics,
aimed at measuring how balanced a map is.

I. INTRODUCTION

Real-Time Strategy (RTS) is a game genre where players
need to build an economy (gathering resources and building
a base) and a military power (training units and researching
technologies) in order to defeat their opponents (destroying
their army and base) and the players can perform actions at any
moment (real-time). In this game genre, tournaments where
players compete in one versus one games are increasingly
popular. Usually these games provide a set of maps for
multiplayer or tournament games, but the quantity of these
maps is insufficient for the demands of the players. For this
reason the fan community uses external tools to create more
game content, in this case, more tournament maps. However,
these tools require a significant amount of manual and time-
consuming intervention, in order to ensure the resulting maps
are balanced, and useful for tournament use.

In contrast to manual content production, Procedural Con-
tent Generation (PCG) refers to either fully or partially auto-
mated generation of game content. Designing an algorithm for
PCG is a complex task for several reasons. For example, it is
desirable that the algorithm allows a human user to influence
the final content in order to avoid losing control over the
design process. Also, in most cases a PCG algorithm must
be able to automatically judge the generated content to filter
out non-interesting or non-entertaining content. A significant
amount of work can be found in the literature for generating
different content types (bits, space, systems, scenarios, design,
and derived), with a wide range of approaches. For a recent
overview, the reader is referred to the work of Hendrikx et al.
[1].

In this paper, we present an approach to generate balanced
maps for RTS games. More specifically, we use a generative
process to create maps suitable for tournament games, in
the game StarCraft, where balance is key. We called our
system PSMAGE (Procedural StarCraft MAp GEnerator).
Additionally, PSMAGE incorporates a collection of evaluation
metrics, that measure different properties of maps, and can
help determine whether a given map is balanced or not.

This paper is organized as follows. The remainder of this
section motivates our work and introduces our application

domain, StarCraft. Then, Section II briefly describes related
work in map generation, in order to provide context to our
work. Section III states, in detail, which is the problem we are
trying to address, and Section IV presents PSMAGE. After
that, Section V presents a series of evaluation metrics used
to evaluate the quality of maps, and Section VI describes our
empirical results. The paper closes with a directions for future
work.

A. Motivation

Creating balanced maps designed for competitive play can
be time consuming for a designer, and difficult to do with
conventional tools. A procedural map generation tool that can
ensure maps resulting in balanced match ups between players
can save a designer a significant amount of time, as well as
guaranteeing a fair playing field for the players. For larger
game studios, this can mean lower costs on newer content and
for smaller studios, this could save time where resources are
limited.

As the ease of procedurally generated map creation in-
creases, so does the potential of non-professionals creating
competitive maps. If the usability of a map creation tool is
sufficient, the barrier of entry for designing maps is signifi-
cantly lowered for gamers, not developers, to make their own
content for practice, casual play with friends or competitions.

B. StarCraft

In this paper we use the game StarCraft: Brood War
as the testbed for our research. StarCraft is an immensely
popular RTS game released in 1998 by Blizzard Entertainment.
StarCraft is set in a science-fiction based world where the
player must choose one of the three races (Terran, Protoss
or Zerg), gather resources, build bases, and train an army to
defeat all of the other players. One of the most remarkable
aspects of StarCraft is that the three races are extremely well
balanced:

• Terrans, provide units that are versatile and flexible
giving a balanced option between Protoss and Zergs.

• Protoss units have lengthy and expensive manufactur-
ing process, but they are strong and resistant. These
conditions makes players follow a strategy of quality
over quantity.

• Zergs, the insectoid race, units are cheap and weak.
They can be produced fast, encouraging players to
overwhelm their opponents with sheer numbers.

978-1-4673-5311-3/13/$31.00 ©2013 IEEE

As in most RTS games, each player starts the game with an ini-
tial base (starting point) and needs to gather resources in order
to build an economy to be able to produce more buildings and
units. In StarCraft there are two types of resources: minerals
and Vespene gas, initially distributed in the map. Initial base
location, map geometry and the distribution resources, are all
some of the key factors determining the strategy deployed by
the players.

II. RELATED WORK

Map generation techniques can be classified into two
large groups: constructive approaches, and generate-and-test
approaches. Constructive approaches are characterized by al-
gorithms that are carefully designed to generate (in a single
attempt) maps that have a desired look or structure. Generate-
and-test approaches, on the other hand, consist of a generating
component (that can generate different maps), and an evalua-
tion component, which assesses the quality of each generated
map, in order to select the best one. This section presents a
brief overview of techniques using both approaches, focusing
on those that have been designed for outdoor map generation,
since those are more closely related to our work, which is
generating maps for strategy games.

Constructive approaches to outdoor map generation typi-
cally work by first generating a heightmap, which is a two-
dimensional matrix storing the height of every cell of a terrain,
and then generating additional elements, such as water, or
vegetation on top of it. Some of the most common methods
to generate heightmaps are using noise, fractals, Voronoi
diagrams or even a combination of the previous ones. For
noise, the usual option is Perlin noise [2]. In the case of fractal
approaches, good results have been accomplished by using the
diamond-square algorithms [3]. Olsen presented a modification
of the diamond-square (smoothed midpoint displacement) in
combination with Voronoi diagrams [4], with improved results.
Given a heightmap, the generation of bodies of water can be
easily solved using flooding algorithms or defining a fixed
water height level. But more sophisticated approaches have
been used, such as fractal models [5] or water flow and erosion
simulations [6].

Some other approaches give the designer a finer control of
the process, like declarative modeling and interactive proce-
dural sketching [7], procedural brushes [8] or software agents
for individual tasks [9]. Moreover, except for a few notable
exceptions, like [10], [4], constructive approaches have not
been explored in depth for the specific problem of generating
maps for strategy games.

Existing work on the second group of approaches, generate-
and-test, can be divided in two groups: Search-Based Procedu-
ral Content Generation (SBPCG) [11] and Multiobjective Evo-
lution algorithms (MOEA). In SBPCG a generated candidate
content is evaluated on one numeric dimension and a search
algorithm is used to explore the search space, looking for
content that maximizes the evaluation (or “fitness”) function.
Frade et al. presented a genetic programming approach using
an “accessibility” fitness function to evolve the heightmap
[12]. Another typical fitness function family in the context of
evolutionary approaches are those based in paths: Sorenson and
Pasquier used a function that measures whether a traversable

path from start to finish location exists [13]; Ashlock et al.
maximize the distance between locations by placing obstacles
(walls) in the map [14]. On the other hand, the idea in MOEA
is to use more than one evaluation or fitness functions, aiming
at finding Pareto front of Pareto-optimal solutions. Togelius et
al. presented an application of this idea to generate strategy
maps [15].

Another important aspect to consider for strategy map
generation is how well the map is balanced. To the best of
our knowledge, there is little work in this area. Togelius et al.
[15] used some fitness functions to evaluate the maps produced
and some of those functions are related to map balance. Lara-
Cabrera et al. [16] analyzed the balance of generated maps
for Planet Wars by running tournament games and promoting
those games where players had similar planets and ships, and
also those that took a long time to complete. A closely related
problem is how to evaluate map quality. Olsen provided some
additional functions, such us low average height and a high
standard deviation for slope, to compute a game suitability
score, and used it to evaluate generated terrains [4]. Perkins
developed a terrain analysis library (BWTA) to analyze the
space partitioning (detecting regions, choke points and base
locations) in RTS maps [17]. The SC2 Map Analyzer1 pro-
vides some spatial analysis and a graphical way to determine
positional imbalance. More recently, Reddad and Verbrugge
presented an approach to geometric analysis of strategy maps
[18].

III. PROBLEM DEFINITION

This paper addresses the problem of procedural map gener-
ation of strategically interesting and balanced maps for strategy
games. Specifically, we will use StarCraft as our application
domain.

For the purposes of this paper, we will define a balanced
map as one that satisfies two conditions: a) if all the players
have the same skill level, they all have the same chances of
winning the game, and b) in the case of StarCraft, no race
has a significant advantage over any other race. And we will
define a strategically interesting map, as one where: a) there is
a significant number of strategies with which a player can win
the game, and b) there is no dominant strategy. For example,
maps that are too small might not be strategically interesting,
since they only allow for early-game strategies.

A main assumption behind our work is that, assuming
that the races are already perfectly balanced (i.e. there are
no specific exploits that benefit a certain race), balanced maps
are those where certain “strategic locations” in the map are
distributed equally for all players. In other words, balanced
maps are those in which all players have equal access to these
strategic locations.

We will consider two different types of strategic locations:
regions and choke points. Usually strategy game maps can
be divided into a set of different regions connected through
choke points. Intuitively, regions correspond to larger open
areas, whereas choke points correspond to narrow passages
that connect each of these areas. Regions can be characterized
by the following properties:

1http://www.sc2mapster.com/assets/sc2-map-analyzer/

• List of choke points. Regions with more than one
entrance are more difficult to defend. And, conse-
quently, regions with only one choke point are harder
to conquer.

• Resources. Areas in the map that contain resources
are important to decide where to place a new base
and start gathering resources. The strategic value de-
pends on the amount of resources and the variety of
resources.

• Openness. Measures the shape of a region, in relation
to how easy a region is to defend or attack. For
instance “thin” regions give an advantage to strong big
units while “open” regions are better for weak small
units. In our work, we compute the “openness” as the
maximum value of the distance transform of the map
in a given region.

• Area. The size of the region, which determines, for
example, the size of a base that could be constructed
in such area.

Choke points are characterized by the following properties:

• Width. Narrow choke points are easy to defend and
perfect for ranged combat units, while wide choke
points are more suitable for big confrontations and
melee2 units.

• Ramp. If the choke point is between regions of differ-
ent height then it is a ramp. This can be strategically
important in games where units in high ground get an
attack or defense bonus like in StarCraft. PSMAGE
does not generate ramps in its current version, but
this is part of our future work. This means that in the
generated maps, the regions with different elevations
are not connected, but accessible by air transport.
Moreover, although we do not generate ramps, we will
consider them in our later balance metrics since we
will analyze human made maps with ramps.

In our particular application domain, StarCraft, each player
starts in a single location, called the starting point. Some of
the regions of the map are selected as the starting points for
different players. Therefore, in order to achieve balanced maps,
we propose to generate maps for which the distributions of
different types of regions and choke points are the same from
each of the starting locations.

In addition to achieving a good balance, map geometry also
affects the different strategies that players can employ. Small
maps with few regions imply early conflict, which results in
short games, where players are only able to exploit a subset
of game mechanics. Maps whose structure forces the conflict
is overly postponed, allow players to deploy a wider range
of strategies. For instance, in StarCraft, it is considered that
each player should be able to expand 3 times before conflict
becomes inevitable in order for a map to generate interesting
gameplay.

In Section V we will provide some evaluation metrics
aimed at analyzing the balance of a map for strategy games,
based on the ideas laid out in this section.

2Close range combat unit.

IV. PROCEDURAL MAP GENERATION FOR STARCRAFT

The process that PSMAGE follows to generate balanced
maps for StarCraft can be roughly divided in the following six
steps:

1) Region generation: which generates the base layout
of the map.

2) Determine elevation: determines the elevations of all
the regions.

3) Starting position placement: assigns some regions
as the starting positions for players.

4) Addition of base locations: adds resources to some
of the regions of the map, making them potential
regions for additional bases for players.

5) Map symmetry: through the use of symmetries,
generate a final map likely to be balanced.

6) Realization: the map is translated into an actual
StarCraft map.

Each step shall now be described in detail. For illustrative
purposes, the result of each step will be shown.

A. Region Generation

As already described above, a strategy map can be seen
as a collection of regions connected (or not) between them. In
PSMAGE, we use an approach based on Voronoi diagrams [19]
to generate such regions. A Voronoi diagram is a way to divide
a given space in a set of regions, based on the proximity of
each point in the space to a series of seed points.

Since PSMAGE generates maps for StarCraft, each map is
a rectangular grid composed of w×h cells. Specifically, given
a desired map size, the process works as follows:

1) Given a desired number of seed points, n (that can be
specified by the user), PSMAGE generates n points in
the map by using Poisson disk sampling [20]. This
technique just needs an input parameter dmin (the
minimum distance between the seeds) results in well
spaced seed points in the map and it avoids areas of
the map with a very high density of seed points.

2) Fortune’s Algorithm [21] is used to generate the
Voronoi diagram. This algorithm uses the idea of
sweep line algorithms to efficiently compute the
Voronoi diagram in only O(n log n) time complexity.

3) Finally, we need to clip the Voronoi diagram with
the size of the desired map in order to ensure all the
regions are closed. We can see the results of these
three steps in Figure 1, notice that a level designer can
decide the number of seeds n (which corresponds to
the number of regions), the minimum distance dmin,
and the size of the map w × h.

B. Elevations

Each of the regions in RTS games might have different
properties. In the particular case of StarCraft, walkable regions
have a given elevation, which can be: normal ground or high
ground. In its current form, PSMAGE cannot generate maps
with non-walkable regions, such as water or space, but that is
part of our future work.

Fig. 1. Regions generated by PSMAGE using a Voronoi diagram with n = 10

seed points and w = h = 128.

PSMAGE just assigns a random elevation, respecting a user
defined parameter α, representing the percentage of regions
to be considered as high ground. Considering other forms of
assigning elevation, and also adding the capabilities to define
ramps between areas of different elevation is part of our future
work. Specifically, we will experiment with local search meth-
ods (such as evolutionary approaches) in order to determine
an elevation distribution that optimizes the evaluation metrics
presented in Section V.

C. Starting Locations

The next step is to determine which are the regions where
each of the players will start. As we will elaborate in Section
IV-E, PSMAGE generates maps by using symmetries, so,
we only need to determine one starting position; the starting
positions for the other players will be generated automatically
via symmetries.

PSMAGE determines which are the k top-left-most regions
in the map (k = 4 in our experiments), and selects one of them
at random as the starting position.

At this stage, PSMAGE needs to validate two conditions:
First, the openness of the starting location must be bigger than
a certain threshold. And secondly, a path between the starting
location and at least one of the regions on the right border
and one region on the bottom border must exist. This second
condition ensures that there will be paths between the starting
positions of all the players, once the final symmetry step is
performed.

If either of the previous two conditions is not met, the
process restarts from Step 1, and a new map is generated.
Figure 2 is a valid configuration of a region with elevation
and starting location already determined.

D. Base Locations

As we mentioned before, one of the important properties
of regions are the resources they hold. In order to achieve

Fig. 2. Regions with elevations (green regions are normal ground and yellow
regions are high ground) and starting location in orange.

Fig. 3. StarCraft pattern in resource allocation.

balanced maps, one of our objectives is to distribute those
resources equitably. Each RTS game have different types of
resources and different densities; for instance a mining spot
can be mined during a long period of time until exhaust the
mineral, while a tree will disappear after a few chops. In
StarCraft there are only two types of resources: minerals and
Vespene gas. Both of them are dense (i.e. they take a significant
amount of time to deplete). The approach used by PSMAGE
is to place those resources following a pattern (typically used
in all StarCraft maps) that is good for letting players create
new base locations.

A base location is a good place to locate the building
to which resource gatherers need to bring the resources (e.g.
a Command Center in StarCraft, if we are playing with the
Terran race). A base location should be equidistant from all
near resources. The pattern PSMAGE uses places a line of
eight mineral spots, and optionally a gas geyser perpendicular
to the mineral line (as shown in Figure 3). The minerals and the
gas geyser form a right triangle, which right angle is typically
located far from the region entrance.

As we explained before, the number of potential base

Fig. 4. Final abstract map with symmetries.

locations affects the gameplay of the map. Therefore for
each player starting location we need at least two potential
additional base locations to promote a delayed conflict to give
time to develop any possible strategy of the game. Taking
this into account we defined, PSMAGE stochastically selects
a number of regions r ≥ 2, but always smaller than βn, where
0 < β ≤ 1 is a user defined parameter (recall that n is the
number of regions).

E. Map Symmetry

Many strategies can be used in order to obtain procedurally
generated balanced maps. PSMAGE uses an approach based
on symmetries. A symmetrical map is made up of two or
four identical (bar mirroring) parts, facing each other. And
this strategy is also used in competitive maps for StarCraft as
we can see in Figure 6. Some map designers masquerade this
symmetry by placing different type of objects in symmetry
to have the same functionality (for instance, blocking a path).
This is called functional symmetry.

The reason to use symmetries is because we want to
generate tournament maps. The StarCraft community has been
mastering the creation of this kind of maps since the releasing
of the game in 1998. The high competitiveness in these tour-
naments makes map makers to extremely care about balance,
and the best way that they find it is creating symmetric maps
to give fair opportunities to win to each player. Our first step
then is to try to reproduce these professional maps, analyze
the balance properties. As part of our future work, we want
to explore how to keep the balance properties while breaking
some of the symmetries.

In our algorithm we used a mirror symmetry in the center of
the map. PSMAGE mirrors the map generated so far, obtaining
four big areas each one symmetric to the others. The final look
is showed in Figure 4.

F. Realization

The last step is to transform this 2D abstract map into a
StarCraft map. Although a StarCraft map is also a 2D map, it
is tile-based, and the tiles follow a diamond pattern because
the pixel art simulates an isometric perspective. Therefore, we
need to transform our square grid into a diamond grid. Since
the resulting diamond grid is an approximation of the original
one, some inaccuracies from the original abstract map can
arise. The fact that the StarCrat map format (.CHK) is a closed
source file format generated significant technical difficulties for
generating the final map. We used some reverse engineering
studies3 to generate the binary file in order to be able to
actually use our generated maps in StarCraft.

G. Summary

Using the taxonomy proposed by Togelius et al. [11],
our map generation method can be categorized as an offline
method, since it takes place during game design. The content
generated is necessary to play tournament games. It uses a
combination of random seeds and control vector where a
game designer can decide some features (such as map size,
number of regions and the percentage of elevated regions).
It is stochastic because given the same features the output
is unpredictable. And it is mainly a constructive approach
although in section IV-C we follow a generate and test schema
with a fitness function.

In our experiments we used the following user inputs:
128 × 128 map size in tiles (4352 in pixels), n = 10 seed
points, dmin = 150 as a minimum distance between seeds,
α = 50 as the percentage of elevated regions, and k = 4
top-left-most regions to consider to place a starting location.

V. MAP BALANCE ANALYSIS

Once a map has been generated, we are interested in
automatically analyzing how balanced and how strategically
interesting the map is, in order to check if it is suitable for a
tournament game. To this end, this section presents a collection
of evaluation metrics to measure different aspects of a map.
Notice that since PSMAGE uses symmetries to generate maps,
some of these functions, aimed at assessing how balanced maps
are, will always return very high scores. However, they are
useful to compare the maps generated by PSMAGE with maps
generated by other approaches.

Togelius et al. defined a collection of fitness functions
for the quality of StarCraft maps [15], and Mahlmann et al.
presented similar functions in their approach [22]. Below, we
present a collection of functions that contain modified versions
of those by Togelius et al. and also a series of new functions
we defined in order to ensure balanced maps for tournament
competitions.

• f1a, f1b: Starting Location Space. Each starting loca-
tion must provide a similar terrain space for placing
buildings. That means that we want to minimize the
standard deviation of the openness and area of all the
starting location regions. More formally, f1a(m) =
σ(Asl), i.e. the standard deviation of the area of

3http://quantam.devklog.net/CHKFormat.htm

the starting location polygons in the map m. And
f1b(m) = σ(Osl), i.e. the standard deviation of the
openness of the starting locations in the map m. The
openness is calculated taking the maximum value of
the distance transform of the map in a given region.

• f2a, f2b: Starting Location Spread. In order to ensure
a fairness distance between each starting location, we
want to minimize the standard deviation of the shortest
ground distance (using A∗) and the shortest air dis-
tance (using Euclidean distance) between each pair of
starting locations. Then, f2a = σ(A∗

sl), where σ(A
∗

sl)
is the standard deviation of all the ground distances
between each starting location; and f2b = σ(Esl),
where σ(Esl) is the standard deviation of all the air
distances between each starting location.

• f3: Base Expansion Accessibility. As we showed be-
fore, in order to promote all kind of strategies in a
map, we have to ensure that each player can expand
(establish in a new base location) two times before the
conflict becomes inevitable. We want to minimize the
standard deviation of the ground distance from each
starting point to the closest base (σ(B1sl)), and the
ground distance from each starting point to the second
closest base (σ(B2sl)). Then f3 = σ(B1sl)+σ(B2sl).

• f4: Base Location Distribution. Here we want to
evaluate the fairness of the base location distribution
in the map. This distribution must be equitable for
all starting positions. Thus, we need to minimize the
standard deviation of the standard deviation of the
shortest ground distance from one starting point to
all the base locations in the map. More formally,
f4(m) = σ({σ(Bnsl)}n=1...4), where σ(Bnsl) is the
standard deviation of the ground distances between
starting location n and all the base locations in the
map m.

• f5a, f5b: Choke Points Symmetry. Choke points are
one of the most important strategic locations in RTS
game maps. Most of the combats happen in these
locations. So we have to be sure that there is not
a starting location that has “better” choke points
than others. The concept of “better choke point” can
differ from game or from race, so a good metric to
ensure this is to look the symmetry of this strate-
gic positions. To quantify this, first we build the
sorted list of choke points present in the shortest
ground path between two start locations S1 and S2,
CPL1,2 = {CP0, CP2, ..., CPq−1, CPq}. Then for
each symmetric choke point we compare the ground
distance to the closest start locations and the properties
of the choke points (width and ramp). To compute this

Fig. 5. Procedural map generated by PSMAGE.

we used the following formula:

j = �CPL.size/2�

q = CPL.size

Xd(CPL) = {dist(S1, CP1), ..., dist(S1, CPj)}

Yd(CPL) = {dist(S2, CPq−j), ..., dist(S2, CPq)}

σdist(CPL) =
�

E[(Xd(CPL)− Yd(CPL))2]

Xw(CPL) = {CP1.width, ..., CPj .width)}

Yw(CPL) = {CPq−j .width), ..., CPq.width)}

σwidth(CPL) =
�

E[(Xw(CPL)− Yw(CPL))2]

Then f5a = σ({σdist(CPLx,y)}x=1...4,y=1...4), where
σdist(CPLx,y) is the standard deviation of the dis-
tance for the pair of starting points x and y. And
f5b = σ({σwidth(CPLx,y)}x=1...4,y=1...4), where
σwidth(CPLx,y) is the standard deviation of the width
for the pair of starting points x and y.

VI. EXPERIMENTAL EVALUATION

In this section we give a brief description of how the
algorithm was implemented. And we show our experiments
comparing the maps generated by PSMAGE and some of the
maps used in the International Cyber Cup (iCCup)4, which
organizes different international StarCraft tournaments.

A. Implementation

PSMAGE has been implemented in C++ and it uses the
Qt framework to provide a graphical user interface where
designers can interact with the variables of the algorithm.

4http://www.iccup.com/starcraft/

Fig. 6. The Circuit Breaker tournament map.

TABLE I. RACE STATISTICS IN Circuit Breaker TOURNAMENT MAP.

Game Won Lost % Won

Terran vs Zerg 63 57 52.5%

Zerg vs Protoss 59 55 51.8%

Protoss vs Terran 71 63 53.0%

We are planning to release PSMAGE as an open source
code to the research community. Additionally, we extended
the functionalities of the BWTA library, implementing our
proposed balance analysis.

B. Experimental Results

In this section we present a balance comparison, using
our proposed evaluation metrics, between a map generated by
PSMAGE (Figure 5), a set of well balanced tournament maps
created by the StarCraft community, and a map bundled with
the original StarCraft (Nightfall), which is balanced, but not
as well balanced as the tournament ones. Figure 6 shows an
example of a tournament map (Circuit Breaker). We would
like to emphasize that this tournament map is one of the most
well balanced StarCraft maps ever designed. This is reflected
in Table I, showing win ratios for different races in this map in
tournament games. Analyzing these numbers we can observe
that the standard deviation between the win ratios and a perfect
balance (50% win ratio) is only 2.48. These statistics are
gathered by the website TeamLiquid5.

Table II shows the results for the proposed balance metrics
with 11 tournaments maps. The tournaments maps selected are
those where the win ratios between the different races have
a standard deviation smaller than 6, i.e. the most balanced
maps between races. As we can observe, most of the metrics,
when evaluated in PSMAGE’s map are less than on standard
deviation away from the mean obtained in the tournament

5http://www.teamliquid.net/tlpd/korean/maps/404 Circuit Breaker

maps (marked in bold in the table). Moreover, in most of
the cases the results of PSMAGE’s map are less than the
average of tournament maps. Only the metric f2a (A* distance
between starting points) has worst results. Now if we compare
the results of tournament maps and the first multiplayer maps
bundled with StarCraft like Nightfall, we can see how Nightfall
is worst than the average in most of the metrics. Now,
comparing PSMAGE with Nightfall we obtained better scores
in all metrics but f2a, f2b and f3. This indicates that the maps
generated by PSMAGE are very well balanced according to the
metrics being used. We believe that the errors introduced in the
step of converting the abstract square grid into a diamond grid
introduce some deviations in PSMAGE’s maps, worsening the
values obtained in some of the metrics (specially for f2a). But
in spite of this, our generated maps are comparable with the
tournament ones in these metrics.

We did not observe any correlation between the game
statistics and the proposed balance metrics. The main reason
is due the noise in the game statistics and the metrics. In
order to evaluate empirically if a map is well balanced we
need game statistics between players with the same skill level.
And this is really difficult to have as it is really difficult to
measure precisely the skill level of a human. In the other
hand some of our proposed metrics are sensitive to BWTA
errors. It has been shown that the algorithm that BWTA uses
to decompose the maps in regions and choke points has some
false positive and false negative issues in some maps. Given the
issues discussed previously, we cannot conclude any significant
correlation between game statistics and balance metrics.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented PSMAGE, an algorithm to
generate tournament StarCraft maps procedurally. We defined
some constraints in the process and a control vector to give
some control to map level designers. We also presented some
metrics to evaluate the balance of a given tournament map.
Using those metrics we showed that the PSMAGE’s maps are
comparable with those made by humans for a tournament game
propose, therefore PSMAGE could be used in the future for
completely automated tournament map generation and/or to
assist human map level designers.

Moreover, there is still a significant room for improvement.
For example, the inclusion of non-walkable regions has been
left for future work. Additionally, we would like to include the
possibility to connect regions of different levels using ramps.
Also, in its current state, PSMAGE does not generate deco-
ration of the generated map. We are currently experimenting
with noise in the tilesets and with statistical models to generate
clutter based on previous existing maps.

Finally, although we would also like to experiment with
additional types of symmetries, a big challenge is to skip
the symmetry step altogether, while still keeping the map
balanced. The map balance analysis presented in this paper
constitutes one step towards this direction. As part of our
future work, we would like to incorporate these metrics more
tightly into the map generation process (for example, as fitness
functions in some of PSMAGE’s steps), and use, generate-and-
test approaches to generate balanced maps that do not look
symmetric to the naked eye.

TABLE II. EVALUATION METRIC COMPARISON BETWEEN PROCEDURAL MAP AND TOURNAMENT MAP, LOWER IS BETTER. MARKED IN BOLD THE
RESULTS THAT ARE LESS THAN ONE STANDARD DEVIATION AWAY FROM THE MEAN OBTAINED IN THE TOURNAMENT MAPS.

Map f1a f1b f2a f2b f3 f4 f5a f5b

Circuit Breaker 12,995.60 1.00 530.86 684.35 50.65 6.17 40.28 3.21

Python 21,287.10 0.83 458.33 1,013.16 220.35 51.74 110.24 16.23

Fighting Spirit 24,182.50 2.28 458.20 687.44 146.39 10.12 216.22 2.31

Icarus 42,302.60 0.71 460.77 511.10 148.26 13.94 251.86 92.86

Colosseum II 26,959.30 4.90 339.01 661.16 160.49 23.56 190.83 68.16

Fantasy II 45,958.70 3.45 612.45 765.91 389.93 174.63 436.60 39.04

Nostalgia 41,331.80 2.05 349.56 690.19 184.26 19.05 145.31 15.45

Luna 141,193.00 4.87 551.02 594.24 527.09 102.91 231.08 138.18

Rivalry 36,199.60 2.18 475.35 673.02 130.48 33.80 162.32 49.72

Lost Temple 96,894.50 2.38 758.35 1,101.78 435.76 188.52 227.14 54.36

Desert Lost Temple 60,454.20 2.59 769.01 1,101.38 593.61 199.99 186.25 27.33

Average 49,978.08 2.47 523.90 771.25 271.57 74.95 199.83 46.08

Standard deviation 37,890.48 1.44 142.55 204.62 182.25 77.40 99.44 41.50

PSMAGE’s map 60,5589.70 0.00 1,313.33 695.10 130.99 8.95 283.49 30.49

Nightfall 107,232.00 1.79 1,141.23 574.00 82.89 21.24 357.83 98.09

REFERENCES

[1] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Transactions on Multi-

media Computing, Communications and Applications, vol. 9, no. 1, pp.
1:1–1:22, Feb. 2013.

[2] X. Pi, J. Song, L. Zeng, and S. Li, “Procedural terrain detail based
on patch-lod algorithm,” in Technologies for E-Learning and Digital

Entertainment, 2006, pp. 913–920.

[3] G. S. P. Miller, “The definition and rendering of terrain maps,” in
Proceedings of the 13th annual conference on Computer graphics and

interactive techniques, ser. SIGGRAPH ’86, 1986, pp. 39–48.

[4] J. Olsen, “Realtime procedural terrain generation,” Department of

Mathematics And Computer Science IMADA University of Southern

Denmark, p. 20, 2004.

[5] S. T. Teoh, “Riverland: An efficient procedural modeling system for
creating realistic-looking terrains,” in Proceedings of the 5th Interna-

tional Symposium on Advances in Visual Computing: Part I, 2009, pp.
468–479.

[6] P. Krištof, B. Beneš, J. Křivánek, and O. Šťava, “Hydraulic erosion
using smoothed particle hydrodynamics,” Computer Graphics Forum

(Proceedings of Eurographics 2009), 2009.

[7] R. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “Integrating
procedural generation and manual editing of virtual worlds,” in Pro-

ceedings of the 2010 Workshop on Procedural Content Generation in

Games, 2010, pp. 2:1–2:8.

[8] G. J. P. de Carpentier and R. Bidarra, “Interactive gpu-based procedural
heightfield brushes,” in Proceedings of the 4th International Conference

on Foundations of Digital Games, ser. FDG ’09, 2009, pp. 55–62.

[9] J. Doran and I. Parberry, “Controlled procedural terrain generation using
software agents,” IEEE Transactions on Computational Intelligence and

AI in Games, pp. 111–119, 2010.

[10] S. Shoemaker, “Random map generation for srategy games,” in AI Game

Programming Wisdom, Vol. 2, S. Rabin, Ed. Rockland, MA, USA:
Charles River Media, Inc., 2004, pp. 405–412.

[11] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE

Transactions on Computational Intelligence and AI in Games, pp. 172–
186, 2011.

[12] M. Frade, F. F. de Vega, and C. Cotta, “Evolution of artificial terrains
for video games based on accessibility,” in Proceedings of the 2010

international conference on Applications of Evolutionary Computation

- Volume Part I, 2010, pp. 90–99.

[13] N. Sorenson and P. Pasquier, “Towards a generic framework for
automated video game level creation,” in Proceedings of the 2010

international conference on Applications of Evolutionary Computation

- Volume Part I, 2010, pp. 131–140.

[14] D. Ashlock, T. Manikas, and K. Ashenayi, “Evolving a diverse collec-
tion of robot path planning problems,” in Proceedings of the Congress

On Evolutionary Computation, 2006, pp. 6728–6735.

[15] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and

G. N. Yannakakis, “Multiobjective exploration of the starcraft map
space.” in CIG. IEEE, 2010, pp. 265–272. [Online]. Available:
http://dblp.uni-trier.de/db/conf/cig/cig2010.html#TogeliusPBWHY10

[16] R. Lara-Cabrera, C. Cotta, and A. J. Fernández-Leiva, “A procedural
balanced map generator with self-adaptive complexity for the real-time
strategy game planet wars,” in EvoApplications, 2013, pp. 274–283.

[17] L. Perkins, “Terrain analysis in real-time strategy games: An integrated
approach to choke point detection and region decomposition.” in
AIIDE, G. M. Youngblood and V. Bulitko, Eds. The AAAI
Press, 2010. [Online]. Available: http://dblp.uni-trier.de/db/conf/aiide/
aiide2010.html#Perkins10

[18] T. Reddad and C. Verbrugge, “Geometric analysis of maps in real-
time strategy games: Measuring map quality in a competitive setting,”
GR@M: Games Research At McGill, School of Computer Science,
McGill University, Tech. Rep. GR@M-TR-2012-3, sep 2012.

[19] F. Aurenhammer, “Voronoi diagrams – a survey of a fundamental
geometric data structure,” ACM Computing Surveys (CSUR), vol. 23,
no. 3, pp. 345–405, 1991.

[20] R. Bridson, “Fast poisson disk sampling in arbitrary dimensions,” in
SIGGRAPH 2007, 2007.

[21] S. Fortune, “A sweepline algorithm for voronoi diagrams,” in
Proceedings of the second annual symposium on Computational

geometry, ser. SCG ’86. New York, NY, USA: ACM, 1986, pp.
313–322. [Online]. Available: http://doi.acm.org/10.1145/10515.10549

[22] T. Mahlmann, J. Togelius, and G. N. Yannakakis, “Spicing up map
generation,” in EvoApplications, 2012, pp. 224–233.

