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Abstract—Real-Time Strategy (RTS) games pose a big chal-
lenge due their large branching factor and real-time nature. This
challenge is even bigger if we consider partially observable RTS
games due to the fog-of-war. This paper focuses on extending
Monte Carlo Tree Search (MCTS) algorithms for RTS games to
consider partially observable settings. Specifically, we investigate
sampling a single believe state consistent with a perfect memory
of all the past observations in the current game, and using it to
perform MCTS. We evaluate the performance of this approach
in the µRTS game simulator, showing that the performance of
this approach is only between 8%-15% lower than if we could
observe the entire game state (e.g., by cheating).

I. INTRODUCTION

Games with imperfect information are usually exponen-
tially harder than games with perfect information. Two-player
unbounded-length games where players have perfect informa-
tion, i.e., those that can be modeled using alternating Turing
machine (ATM) such as Chess, are EXPTIME [1]; while if
there is private information, i.e., games that require private
alternating Turing machine (PATM) such as PRIVATE-PEEK,
they are 2-EXPTIME [2]. Therefore, any attempt to try to find
an optimal strategy will be intractable. This paper approaches
the problem of solving games with imperfect information and
large branching factors by generating a single believe state as
close as possible to the real game state that can be used as the
starting point for search by any game tree search algorithm,
instead of the partially observed game state.

Real-Time Strategy (RTS) games pose unique challenges
than other games: 1) they have a huge branching factor [3]
and hence a huge believe state, 2) they are real-time, leaving
very little time to make a decision, and 3) they have durative
actions. Thus, the problem of handling partial observability
in RTS games has not received yet sufficient attention, and
current research in game tree search in partially observable
domains has focused in games with smaller branching factors
as described in Section II-B.

This paper proposes to use a combination of a memory of
past knowledge and an inference process to maintain a single
believe state, which is an estimation of the most probable game
state given the current partially observable game state. We
present experiments in the context of Monte Carlo Tree Search
(MCTS) in the domain of µRTS1.

1https://github.com/santiontanon/microrts

The remainder of this paper is organized as follows. Sec-
tion II introduces RTS games and game tree search for imper-
fect information games. Section III presents our single believe
state generation approach. Section IV presents an empirical
evaluation of the proposed approach, and finally Section V
reviews the common approach of determinization to handle
games of imperfect information.

II. BACKGROUND

This section begins with an overview of RTS games and a
formal definition of a generic RTS game. Finally it reviews
the research done in imperfect information games.

A. Real-Time Strategy Games

RTS games are complex adversarial domains, typically
simulating battles between a large number of military units,
that pose a significant challenge to both human and artificial
intelligence (AI) [4]. Designing AI techniques for RTS games
is challenging because:
• They have huge decision spaces: the branching factor of

a typical RTS game, StarCraft, has been estimated to be
on the order of 1050 or higher [3] (for comparison, that
of Chess is about 35, and that of Go about 180).

• They are real-time, which means that: 1) RTS games
typically execute at 10 to 50 decision cycles per second,
leaving players with just a fraction of a second to decide
the next action, 2) players can issue actions simultane-
ously, and 3) actions are durative.

• They are partially observable due the fog-of-war. So we
cannot observe the parts of the map that are out of the
sight of our units.

Additionally, some RTS games are also non-deterministic,
but we will not deal with this problem in this paper.

The reason for which the branching factor in RTS games
is so large is that players control many units, and players can
issue multiple actions at the same time (one per unit). We will
refer to those actions as unit-actions (a). A player-action (α) is
the set of unit-actions that one player issues simultaneously in
a given game cycle. Thus players issue only one player-action
at any given time (which will consist of zero or more unit-
actions). Notice that, even if unit-actions are durative, each
player issues exactly one player-action at each decision cycle.

Figure 1 is a game state snapshot from a µRTS game that
illustrates the idea of fog-of-war. There are two players, max



Fig. 1. A screenshot of the µRTS simulator. Square units correspond to
“bases” (light grey, that can produce workers), “barracks” (dark grey, that can
produce military units), and “resources mines” (green, from where workers
can extract resources to produce more units), the circular units correspond to
workers (small, dark grey) and military units (large, yellow or light blue).

(shown in blue), and min (shown in red). Squares with a white
background are the locations not observable for any player,
squares in blue are the ones observable by max player, squares
in red are observable by min player, and violet squares are
the locations observable by both players. In Figure 1 max
player can only observe two min’s units (the red building
in the bottom-left side and the worker in the bottom-center),
while min player can see three max’s workers (the two near
the barracks and one near the base). Figure 1 also shows the
believe state for player max as magenta dots, showing that
max is predicting correctly the location of two workers but
missing the other two.

In the remainder of this paper, we will use the following
definition for an RTS game. A partially-observable RTS game
is a 9-tuple G = (P, S, Z,O,A,L, T,W, s0), where:

• P = {max,min} is the set of players.
• S is the set of possible game states.
• Z is the set of possible observations (i.e., since the game

is partially observable, the only thing players can observe
are the states in Z).

• O(p, s) → Z, is the observation function that given a
player p ∈ P and the current game state s ∈ S, returns
the observable game state zp ∈ Z from a point of view
of player p.

• A is the finite set of unit-actions (a) that units can
execute. Also remember that we defined α as the set of
unit-actions from the same player.

• L(p, α, s) → {true, false}, is a function that returns
whether player p can execute player-action α in state s.

• T (st, αmin, αmax)→ st+1 is the deterministic transition

function, that given a state st ∈ S at time t, and the
player-actions of each player (αmin and αmax), returns
the state that will be reached at time t+ 1 (i.e., T is the
forward model of the game).

• W : S → {maxwins,minwins, draw, ongoing} is a
function that determines the winner of the game, if the
game is still ongoing, or if it is a draw.

• s0 ∈ S is the initial state.
Additionally, we define Ip(z) ⊆ S as the information set of

player p given observation z, which is the set of all states that
are indistinguishable for player p given the current observation
z, i.e., Ip(z) = {s ∈ S|O(p, s) = z}.

B. Game Tree Search in Partially Observable Domains

Zermelo’s theorem [5] says that an optimal deterministic
strategy (a.k.a. a pure strategy) can be found computing
the Nash equilibrium for perfect information games, but in
imperfect information games deterministic strategies can be
exploited by the opponent, rendering them suboptimal. This
was confirmed by Kuhn [6] showing that the optimal strategy
for a simplified poker game is indeed a randomized strategy
(a.k.a. a behavior strategy).

Imperfect information games are usually modeled as
extensive-form games, they are like perfect information
games but with information sets to combine all the states
(a.k.a. worlds) that are indistinguishable to a player at the
time she has to make a decision. Unfortunately, the game
tree complexity of imperfect information games tends to be
very high even for simple games, and approaches to compute
the optimal randomized strategy can be exponential on the
size of the game tree [6] or at least polynomial in the size
of the game tree [7]. For this reason most researchers tried
approximation algorithms or they made assumptions related to
their particular game that not always hold true for RTS games.
Some of them assume an opponent with full observability and
they require to visit all the possible states, like Best Defence
model [8], Vector minimaxing [9], or Believe-state AND-OR
tree search [10]. Zinkevich et al. [11] presented Counterfactual
Regret Minimization (CFR), an algorithm that converges to
the Nash equilibrium and does not assume an opponent with
full observability, but still needs to sample all the different
states. Lanctot et al. [12] improved the previous algorithm
to avoid sampling all the states using Monte Carlo sampling
(Monte Carlo CFR, MCCFR). MCCFR has been applied with
great success in games with a short game tree depth, compared
to that in RTS games, and where the disambiguation of the
information sets only happens at the end, such as Poker or
Liar’s Dice.

The most used simplification is known as determinization
(see Section V for an overview of work in this area). The
idea of determinization is to sample a world from the in-
formation set and proceed with a perfect information game
tree algorithm. This is usually repeated several times, and the
action to perform is determined via voting. This has been
described as “averaging over clairvoyance” [13] and as Frank
et al. [8] pointed out, it raises many problems: 1) players must



TABLE I
LEAF CORRELATION, BIAS AND DISAMBIGUATION FACTOR IN EACH OF

THE TESTED MAPS.

8x8 12x12

Leaf Correlation 0.994 0.987
Bias 0.510 0.511
Disambiguation Factor -0.010 0.046

behave the same way in states from the same information set
(strategy fusion) and 2) the search can be “fooled” to pursue
a highly rewarded state that cannot be reached under some
information sets (non-locality). Additionally, in the case of
imperfect information RTS games, determinization leads to
fake omniscience, which happens when the player never tries
to hide or gain information because she believes that she has
perfect information. Despite these problems, determinization
works very well in some domains. Long et al. [14] explained
why by defining three properties of game trees that can lead
to strategy fusion and non-locality: 1) probability of another
terminal node with the same payoff value (leaf correlation), 2)
probability that the game will favor a particular player over the
other (bias), and 3) how quickly the states in an information set
shrinks with regard to the depth of the tree (disambiguation
factor). They found that determinization will perform well in
games with a very high disambiguation factor or with a very
high leaf correlation combined with a polarized bias (i.e., a
very low or very high bias).

We analyzed these three properties for µRTS with two
maps: one of size 8× 8 and one of size 12× 12. Computing
the exact values by exploring the whole game tree is not
feasible for RTS games. Therefore we approximate the values
exploring the game tree with a RandomBias AI (explained
in Section IV). Table I shows the approximated values after
10000 games in the 8×8 map and 2000 games in the 12×12
map, where we can do the following observations: 1) leaf
correlation is really high as expected, since the last player’s
moves usually do not change the outcome of the game, 2) the
bias is balanced, and 3) the disambiguation factor2 is really
low or even negative, this is because in RTS games we can lose
information. Figure 2 shows the average disambiguation factor
for a winning player, for a losing player, and for any player,
computed as the difference in the number of non-observable
tiles (positive means that the number of non-observable tiles
reduces, and negative that it grows). The figure shows how at
the beginning of the game with a 12 × 12 map, both players
start gaining information, but this gain decays over time. Also,
we see that the loser player tends to lose information toward
the end of a game (which is normal, since a losing player will
start losing units fast at the end of the game).

In this paper we specifically focus on the problem of
generating a single believe state for games with durative

2Since calculating the size of the information set in a RTS game is complex,
due to their size, we used the number of non-observable tiles in the map as
a proxy; the assumption is that the size of the information set is exponential
in the size of non-observable tiles.
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Fig. 2. Disambiguation factor over time in a 12x12 map.

TABLE II
IMPERFECT INFORMATION GAME PROPERTIES FOR DIFFERENT GAMES.

Poker Kriegspiel µRTS

Initial board configurations 1,081∗ 1 1
Observable moves YES NO YES
Hidden moves NO YES YES
Exposing moves NO NO YES
Gathering moves NO YES YES

actions and time constrains such as RTS games. Parker et
al. [15] proposed 4 different sampling strategies for large
information sets, but they require to perform depth-first search
over the space of observations, something that could be
expensive in domains with time constrains. Richards and
Amir [16] improved the performance of the previous approach
by modeling the problem as a Constrain Satisfaction Problem
(CSP). In our approach, instead of generating a pool of valid
believe states, we try to generate a single believe state as close
as possible to the real game state.

Partially observable RTS games have the following proper-
ties: 1) the set of initial board configurations is small; this
is because players know which map they are playing on, and
the only non-observable information at the start is where did
the opponent player start. For example, in STARCRAFT there
is a fixed set of “start locations” in each map, and thus a
player only needs to determine in which of the possible start
locations did the opponent start. In µRTS each map defines a
given start location for both players, and thus the initial game
state is known to both players. 2) Observable moves are those
that are fully observable to all players. 3) Players can perform
hidden moves for units that are under the fog-of-war. 4)
Exposing moves occur when a player executes an action that
reveals information to her opponent (like moving a unit out of
the opponent’s fog-of-war). 5) Information gathering moves
are those that make some opponent information observable.

∗Number of possible hands for a two players Texas hold’em game after
the flop.



Table II shows a comparison of imperfect information game
properties for different games.

III. SINGLE BELIEVE STATE GENERATION FOR RTS
GAMES

Although some work exists in the literature concerning
handling partial observability in RTS games (such as Weber et
al. [17] particle model to predict the locations of opponent’s
units under the fog-of-war in STARCRAFT), to the best of our
knowledge this paper is the first attempt to deal with the partial
observability in RTS games in the context of game tree search.
Specifically, in this paper we explore how far we can go with
only sampling one of the possible worlds in a large information
set. Our hypothesis is that since the pace of RTS games is
very fast, we do not need to find the optimal strategy every
frame, therefore sampling a game state that approximates the
actual game state sufficiently well, will be enough to converge
towards a strong gameplay.

We assume that both players know the initial board con-
figuration, i.e., s0 is fully observable. This assumption is
true for board games like Kriegspiel where the initial board
configuration is known for both players, or for RTS games
where for a given map the initial base locations are known
for both players (like in µRTS). For other games like Poker
this is not true since the opponent hand is unknown, but those
are out of the scope of this paper. With this assumption we
propose three different strategies for sampling a single state,
which we call the believe state from the current information
set:
• Goal Seeker (GS): Given an initial state s0 with perfect

information, this strategy records the location of each
opponent unit that cannot move, Unm. Then, in order to
generate a believe state sb from the current observation
z, all the units in Unm are added to z if they are not
already there. If a unit present in the memory is destroyed
from the game state, then it is removed from the memory
as well. This can be seen as an extreme version of
the overconfidence player model from [18], where the
opponent always chooses to do nothing. We call this
strategy the “goal seeker”, since it has the effect of just
remembering where the opponent base is, and thus, tends
to go toward the enemy base right away.

• Imperfect Memory (IM): Given an initial state s0 fully
observable, this strategy records the location of all op-
ponent units into a record Uo. Then, given a current
observation z, if the location of a unit in Uo is visible, the
unit is removed from Uo, otherwise we add the unit into
z. This method basically adds to the current observation
the “last known enemy unit location” of all the units that
we cannot currently see, but that were observed at some
point. We call this “imperfect memory” since if we saw
a unit in a position x, which then became unobservable,
if we observe x again, but there is no unit there, then we
forget that we ever was a unit there.

• Perfect Memory (PM): This strategy acts like IM but
adds an inference mechanism. The inference mechanism

is used in two situations: 1) when the location of a unit
in Uo is not visible, it updates the unit’s location in Uo

with the closest not observable location from the unit’s
location in the memory (i.e., it assumes the unit has
moved, but just the minimum amount of move as for
making the unit not observable); and 2) it adds units that
we have never seen but they are required to explain part
of the observation (i.e., if in order for the opponent to
have units of a certain type t1, the opponent must have
first build a unit of type t2, if we observe a unit of type
t1, then for sure we know the opponent has a unit of type
t2). Inferred units are added in the closest non-observable
location to the opponent’s unit that caused the inference.
In other words, this sampling never forgets a unit that it
has seen (hence the name “perfect memory”), it also tries
to guess their location, and it infers units that cannot be
seen but that must be there.

From a point of view of game theory, these samplings
capture the memory of past knowledge [19] at different degrees
of accuracy.

IV. EXPERIMENTAL EVALUATION

In order to evaluate the performance of each sampling
strategy, we used the open-source µRTS game [20]. We ran
experiments in six different maps: three standard game maps
where each player starts with one base and one worker but
with different map sizes (1BW8x8, 1BW10x10, 1BW12x12)
and three maps where each player starts with four bases and
four workers (4BW8x8, 4BW10x10, 4BW12x12). Given the
small size of the maps being used for evaluation, the default
visibility ranges of some of the units in µRTS were too large
(basically the whole map was almost visible at the start in 8x8
maps). So, we reduced the visibility range of bases to 3, and
of workers to 2. In our experiments, we used the following
AIs:
• RandomBiased: It selects one of the possible player-

actions at random, but with 5 times more probability
of selecting an attack or a harvest action than any other
action.

• Partial Observability Worker Rush (POWorkerRush): It is
a hard-coded strategy that constantly produces “Workers”
to attack the nearest target or if there is not enemies they
move to the nearest not visible location. It only uses one
worker to mine resources.

• Partial Observability Light Rush (POLightRush): Like
POWorkerRush but it builds a barracks, and then con-
stantly produces “Light” military units instead of “Work-
ers”.

• ε-Greedy MCTS (ε-MCTS): As a baseline for game tree
search we selected the well known MCTS with an ε-
greedy sampling strategy (ε = 0.25 as shown to be best
in [20]) as a tree policy, and a RandomBiased default pol-
icy to simulate 200 game cycles. The evaluation function
used was: the sum of the cost in resources of all the player
units in the board weighted by the square root of the
fraction of hit-points left, then subtract the same sum for
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Fig. 3. Accumulated score (wins + 0.5 × ties) obtained by each AI in each of the different µRTS maps (maximum score would be 340, meaning winning
every single game).

the opponent player. We tested with different number of
playouts per cycle (100, 500 and 1,000). Although there
are better game tree search algorithms for RTS games like
Portfolio GReedy Search [21], LSI [22] NaiveMCTS [20]
or Informed MCTS [23], [24] we wanted to test the
performance of a partially observable game state with
a simple and well known game tree search algorithm
since the performance difference between the different
single believe state samplings should be analog for other
search tree algorithms. This AI uses directly the partially
observable state, i.e., if there is no enemies in the partially
observable state the AI thinks it won and it might return
an arbitrary action.

• GS ε-MCTS: Like ε-MCTS AI but at each frame the
partially observable game state is enhanced with the Goal
Seeker sampling.

• IM ε-MCTS: Like ε-MCTS AI but at each frame the
partially observable game state is enhanced with the
Imperfect Memory sampling.

• PM ε-MCTS: Like ε-MCTS AI but at each frame the
partially observable game state is enhanced with the
Perfect Memory sampling.

• Cheating ε-MCTS: Like ε-MCTS AI but this time in-
stead of a partially observable state we receive a fully-
observable game state. Notice that this amounts to
cheating, since the opponent still receives a partially-
observable game state. The purpose of using this AI is
to offer an upper bound of the performance that can be
expected out of ε-MCTS.

For each pair of AIs (3 hard-coded and 5 MCTS, with 3
different playout budgets each, results in 18 different AIs, and
a total of

(
18
2

)
= 153 match-ups), we ran 20 games per map

and per match-up (each AI plays 20 games as player 1 and

another 20 games as player 2 in the same map against the
same opponent) in 6 different maps, resulting in a total of
153× 20× 6 = 18360 games. We limited each game to 3000
cycles (5 minutes), after which we considered the game a tie.

A. Results

Figure 3 shows the summarized results of our experiments.
For each map and for each AI, we show a “score”, calculated
as wins + 0.5 × ties. From this Figure 3 we can make the
following observations:
• Hard-coded strategies: These strategies perform very

well in maps with a single base and worker, since that’s
the scenario for which they were designed. The main
drawback of hard-coded strategies is that they cannot
handle all type of situations. This can be seen in maps
with 4 bases where POWorkerRush and POLightRush do
not know how to exploit all the bases and they perform
poorly against MCTS. We can also observe how the
performance of POWorkerRush decreases by the size of
the map, while POLightRush’s performance increases.
This shows how these strategies lack generality (they
perform very well in some situations, outperforming all
other techniques, but they under-perform in others).

• Number of playouts: As expected, the performance of
MCTS based AIs increases if we perform more playouts
(100, 500 and 1000 were tested in our experiments).
Showing a large improvement between 100 and 500 but
a small one between 500 and 1000. For the purposes
of our evaluation we fixed the number of playouts for
comparison. But keep in mind that for RTS games the
budget is usually limited by time and not by playouts,
therefore MCTS AIs that can perform more playouts in
the same amount of time will perform in practice better
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than other theoretically stronger MCTS AIs that need
more time to finish a playout.

• Size of non-observable map positions: The partially
observable game state property in RTS games comes from
the fog-of-war that establishes that we cannot observe
the parts of the map that are out of sight of our units.
Therefore if we are able to position all our units to cover
all the map, the game state becomes full observable. This
property can be seen in 4BW8x8 map where we already
begin with spread units that can cover almost the entire
small map. Hence the good performance of ε-MCTS in
the 4BW8x8 map.

• Single believe state generation performance: As we can
see in Figure 3, even the simple GS sampling is better
than not using any believe state estimation at all. IM is
better than GS and PM is better than IM (none < GS <
IM < PM < cheating). Moreover, we can see that
the performance of PM is very close to that of cheating
in most scenarios (the largest difference is seen in the
4BW10x10 map).
Figure 4 shows a deeper analysis of how accurate are the
believe state estimations made by GS, IM and PM by
computing the average normalized score (wins + 0.5 ×
ties) difference for each believe state sampling against
cheating (perfect information). It reveals that PM only
suppose a 8%-15% performance decreasing while without
any sampling can be a 50% performance penalty. Another
observation is that while the performance penalty of PM
is more constant across the maps, the performance of the
other believe state samplings is more sensitive to the map
size.

Analyzing the game replays we also observed that PM
exhibits and emergent behavior of units trying to find a
previously seen enemy. However this is an illusion of gathering
information or scouting since the game tree search believes
it has perfect information and tries to attack the unit in the
believe state, and when it approaches the believe state keeps

relocating the position of the unit in the believe state. But this
is also the key of the higher performance of PM since it will
search for remaining opponent units in the map, while other
sampling will stop searching and hence ending more games
in a tie.

We also analyzed the similarity between the generated
believe state and the real game state. We used a measure
inspired in the Jaccard index (a well known similarity measure
between sets: the size of their intersection divided by the size
of their union). Given the full observable game state s (s is a
set of units), a believe state sp from the point of view of player
p, and given the opponent player q, the similarity between s
and sp in estimating the units of q is defined as:

J(q, s, sp) =
unitDist(q, s, sp)

units(q, sp) + units(q, s)− unitDist(q, s, sp)

Where units(q, s) is the number of units of player q in s, and
unitDist(q, s, sp) is the sum of normalized distances between
the units of player q that exist both in s and sp. This measure
gives us the notion of how well are we guessing the opponent’s
units. Figure 5 shows the average Jaccard index over time
and the 95% confidence interval (CI) for each believe state
sampling and for each map. As we can see PM outperforms
the other believe state sampling strategies by a large margin.
Notice how for maps bigger than 8×8 the prediction accuracy
of all samplings starts to decrease quickly at the beginning of
the game until combat is engaged (usually at frame 250-300) to
increase again until frame 600-750 and finally decrease slowly
until the end. To avoid this “depression” at the beginning of
the game, humans players usually send a scout to the enemy’s
base to gather information. Also, small maps or maps with
units covering a good portion of the map from the initial
state (1BW8x8, 4BW8x8, 4BW10x10) do not exhibit the
“depression”, meaning that from the beginning we almost have
perfect information and we keep losing information over time
(specially for the loser player). The fact that the 95% CI grows
over time is because we have less samples of long games,
especially for small maps.

V. RELATED WORK

As mentioned above, the most common technique to handle
partial information in game tree search is determinization. We
review work in this area in this section.

Monte Carlo Sampling [25]: Also known as Perfect
Information Monte Carlo Sampling (PIMCS), it randomly
samples states to apply a perfect information search algorithm
like alpha-beta and it returns the best average move of all
sampled states. This technique have been applied in games
like Bridge [26], but it have been shown that the error to find
the optimal strategy rapidly approaches to 100% as the depth
of the game tree increases (depth = 13) [27].

Statistical Sampling [15]: Parker et al. proposed a statis-
tical sampling for large believe state games like Kriegspiel.
More specifically they proposed 4 different samplings: Last
Observation Sampling (LOS), All Observation Sampling
(AOS), All Observation Sampling with Pool (AOSP) and
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Fig. 5. Average Jaccard index between the believe state and the real game state (1 means perfect matching, 0 means nothing in common) over time (game
frames) and 95% CI. Top row are the maps with one base: 1BW8x8 (top left), 1BW10x10 (top center) and 1BW12x12(top right); bottom row are maps with
four bases: 4BW8x8 (bottom left), 4BW10x10 (bottom center), and 4BW12x12(bottom right).

Hybrid Sampling (HS). For each sample state (world) it uses
alpha-beta and decides the move that maximizes the score.

Information-set search [18]: Parker et al. proposed a game-
tree search using information sets and computing the expected
utility (EU) of each information set. The EU is computed as
the weighted sum of the EUs for each possible move, weighted
by the probabilities of a move given all the previous moves
(perfect recall) times the EU of applying the move. To make
the problem tractable in Kriegspiel, they used the following
simplifications:

• The states in each information set are sampled using
Monte Carlo sampling.

• The search is limited to a depth and a heuristic evaluation
function is used for the EU.

• The probabilities of choosing moves for our opponent
(strategy of a player, a.k.a. player modeling) are limited
to two options: the opponent knows our pure strategy
and chose moves that minimize our EU (paranoia); the
opponent does not know anything and uses a uniform
random distribution of our actions (overconfidence).

In their experiments, overconfident opponent model outper-
formed the paranoid model.

Monte Carlo Tree Search (MCTS) with Simulation
Sampling [28]: Ciancarini et al. proposed to delay the de-
terminization until the simulation phase of MCTS, showing
that they got better results using a heuristic function to get the
probability of each type of world.

Determinized MCTS [29]: It uses root parallelization
where each root is a different determinization.

Single Observer Information Set MCTS (SO-
ISMCTS) [30]: The idea is that on each iteration of
the MCTS it makes a random root determinization to get the
set of legal actions and it uses information sets as nodes in
the game tree. This algorithm makes several assumptions: 1)
the same action (a) applied to all the states of an information
set (I) transition to the same information set (I ′), 2) opponent
uses a random move selection on the moves that are not
observed, and 3) at each real player turn (i.e., after executing
an action in the game state), we can generate the information
sets from the current observations. Unfortunately this last
assumption is not true for RTS games because the presence
of durative actions.

Multi Observer Information Set MCTS (MO-
ISMCTS) [30]: To solve the second assumption of the
previous algorithm, they proposed a search using two
ISMCTS simultaneously, one for each player or “point of
view”. The traversing is done simultaneously but the action
is considered from the point of view of each player. In their
tests a Determinized MCTS works better for games with
low probability of strategy fusion while MO-ISMCTS works
better when there is a high chance of strategy fusion.

Although all of these techniques use determinization at
some degree, those that compact tree nodes by information
sets do not usually have the problem of strategy fusion or
non-locality; and only SO-ISMCTS partially avoids fake omni-
science since none of the players have perfect information but
there is not a mechanism to detect and exploit gathering/hiding
information actions.



VI. CONCLUSIONS

This paper presented a comparison of strategies for single
believe state generation for partially observable RTS games.
RTS games pose a particular imperfect information game
problem where the search space is larger than other imperfect
information games like Kriegspiel, the time between turns is
really short and the information sets can grow really fast. For
these reasons we limited ourselves to sampling a single believe
state as close as possible to the real game state.

Experimental results indicate that the Perfect Memory be-
lieve state sampling strategy only decreases the performance
of a game tree search algorithm (like MCTS) by 8%-15%
compared to having access to the whole game state (cheating).

As part of our future work we want to incorporate the con-
cept of information sets into game tree search algorithms for
RTS games in order to being able to generate gathering/hiding
information actions (which would never be generated with the
proposed approach). We also want to relax the assumption
that we have perfect information of the initial state to a set
of possible initial game states. This can be seen for example
as if we know that the opponent will have one base in one of
the possible initial base locations, but we do not know which
one. Lastly, we would like to update the believe state taking
into account the fact that actions are durative. For example, if
a barracks in the believe state starts training a marine, even
if we do not see the barracks any more, we can infer that in
a certain amount of time, the opponent will have a marine
available.
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