
Walling in Strategy Games via Constraint Optimization

Florian Richoux
JFLI, CNRS / LINA

University of Tokyo / Université de Nantes
Tokyo, Japan / Nantes, France
florian.richoux@univ-nantes.fr

Alberto Uriarte and Santiago Ontañón
Computer Science Department

Drexel University
Philadelphia, PA, USA 19104
{albertouri,santi}@cs.drexel.edu

Abstract

This paper presents a constraint optimization approach
to walling in real-time strategy (RTS) games. Walling
is a specific type of spatial reasoning, typically em-
ployed by human expert players and not currently fully
exploited in RTS game AI, consisting on finding con-
figurations of buildings to completely or partially block
paths. Our approach is based on local search, and is
specifically designed for the real-time nature of RTS
games. We present experiments in the context of the
RTS game StarCraft showing promising results.

Introduction
This paper presents a constraint optimization approach to
walling in real-time strategy (RTS) games. Walling is a
specific type of spatial reasoning, typically employed in
RTS games by human expert players, consisting on finding
configurations of buildings to completely or partially block
paths in order to block or slow-down enemy attacks.

Spatial reasoning is one of the open challenges in RTS
game AI, and, except for a few approaches (such as the work
of Perkins (Perkins 2010)) has not received enough atten-
tion in the literature (Ontanón et al. 2013). Spatial reasoning
however, is key in RTS and other games where the action oc-
curs in maps that are not predefined in advance, and where
players need to exploit the spatial features of the different
possible map configurations in which the game can occur.
This paper presents one step towards that direction by ad-
dressing a specific spatial reasoning problem, and showing
how a specific form of constraint optimization is particularly
well suited to the real-time nature of RTS games.

Specifically, the approach to walling presented in this pa-
per is based on local search, which does not ensure finding
optimal solutions (not even actually finding a solution at all),
but in practice produces high-quality solutions under real-
time constraints. Our approach consists of three basic steps:
1) identifying a location where to perform walling, 2) spec-
ifying the parameters of the wall, and 3) using local search
to actually determine the exact composition of the wall.

The remainder of this paper is organized as follows. First
we provide some background on spatial reasoning. Then we

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

present our local search approach. After that, we present an
empirical evaluation of our method using maps from Star-
Craft, a RTS game that has emerged in the recent years as
the standard testbed for RTS Game AI.

Spatial Reasoning in RTS Games
This section introduces real-time strategy (RTS) games and
the problem of walling.

Real-Time Strategy Games
Real-time Strategy (RTS) is a sub-genre of strategy games
where players need to build an economy (gathering re-
sources and building a base) and military power (training
units and researching technologies) in order to defeat their
opponents (destroying their army and base). From a the-
oretical point of view, the main differences between RTS
games and traditional board games such as Chess are that
1) they are simultaneous move games, 2) actions are dura-
tive, 3) RTS games are “real-time” (which actually means is
that each player has a very small amount of time to decide
the next move), 4) most RTS games are partially observ-
able, and 5) the complexity of these games, both in terms of
state space size and in terms of number of actions available
at each decision cycle is very large (for example, the state
space of StarCraft is at least 101685 compared to 1050 for a
game like Chess) (Ontanón et al. 2013). For those reasons,
standard techniques used for playing classic board games,
such as game tree search, cannot be directly applied to solve
RTS games without the definition of some level of abstrac-
tion, or some other simplification. Interestingly enough, hu-
mans seem to be able to deal with the complexity of RTS
games, and are still vastly superior to computers in these
types of games (Buro and Churchill 2012).

The experiments presented in this paper are carried out in
the RTS game StarCraft: Brood War, which is an immensely
popular RTS game released in 1998 by Blizzard Entertain-
ment, and which has emerged in the past few years as the
standard testbed for RTS game AI.

Spatial Reasoning
The map used for RTS games is not fixed, and might change
from game to game. Thus players need to spatially analyze
the map to adequately maneuver military units, to determine

Proceedings of the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2014)

52

where to place new buildings, among many other spatial de-
cisions. This problem of analyzing the geometry of the map
in order to extract strategic information that can be used in
subsequent decision making processes is called spatial rea-
soning, and has been identified as an open problem in RTS
game AI (Buro 2003; Ontanón et al. 2013).

From a theoretical point of view, spatial reasoning has
been studied in many fields, such as AI or cognitive sci-
ence, where approaches such as spatial logics or qualitative
spatial representations have been studied. The most influ-
ential approach to spatial logics is the RCC8 (Region Con-
nection Calculus with 8 relationships) spatial logic (Randell,
Cui, and Cohn 1992), which allows to reason about spatial
regions and their relations by concepts analogous to those
in Allen interval logic (Allen 1984), although basic calcu-
lus is NP-complete (Gerevini and Nebel 2002). Qualitative
spatial representations typically use spatial logics for repre-
sentation purposes, but do not use there axiomatic inference
mechanisms, but qualitative inference, such as analogical or
case-based reasoning (Forbus 2008).

In the specific area of RTS game AI, work on spatial rea-
soning in RTS games has mainly focused on three different
problems: 1) map analysis: how to divide the map into a set
of disjoint regions with certain properties of interest (mainly
to detect chokepoints that are easy to defend), 2) unit maneu-
vering: how to spatially maneuver groups of units in com-
bat in order to gain an advantage over the opponent, and 3)
map generation. The best known work on map analysis is
that of Perkins (Perkins 2010), who presented an algorithm
to decompose a map into regions and chokepoints, imple-
mented in the popular library BWTA, that is used in most
StarCraft playing bots. An on-line terrain analysis gather-
ing terrain knowledge through exploration is also proposed
by (Si, Pisan, and Tien Tan 2014). Work on unit maneuver-
ing is typically performed using potential fields or influence
maps (Hagelback 2012; Uriarte and Ontañón 2012). Finally,
different forms of spatial reasoning are performed by auto-
matic map generating frameworks (Raúl Lara-Cabrera 2014;
Togelius, Preuss, and Yannakakis 2010) in order to ensure
some gameplay or aesthetic properties of the maps.

In this paper, we focus on a different spatial reasoning
problem: walling, consisting on finding building configura-
tions that completely or partially block a path. Walling is
commonly employed by expert human players, and with the
exception of (Certicky 2013), has not received much atten-
tion in the literature.

Problem Statement
A classical tactic in RTS to defend a base is to make a wall,
that is, to construct buildings side by side in order to close or
to narrow the base entrance. Closing a base gives the player
extra-time to prepare a defense, or helps him to hide some
pieces of information about his current strategy. Narrowing
an entrance creates a bottleneck that is easier to defend in
case of invasion. In this paper we will focus only in walls
constructed by buildings, discarding small narrow passages
that can be closed by small units like workers.

In StarCraft, the map space is defined by two grids: The
walk grid, where each cell is an 8× 8 pixels square, and the

build grid, where each cell is a 4 × 4 walk tile square (i.e.,
of 32 × 32 square of pixels). Each cell in the build grid is
called a build tile. Moreover some build tiles are buildable
and some are not-buildable. The approach presented in this
paper is applicable for any RTS game for which such a build
grid exists.

We will define two properties of buildings: their build
size, and their real size. The build size is a pair (w, h) of
build tiles. In order to create such a building, we need a
rectangle of buildable tiles in the map (w build tiles in width
and h build tiles in height). The real size is a pair (wp, hp),
such that wp ≤ 32 × w and hp ≤ 32 × h, representing the
actual size of the building in pixels once it’s constructed in
the game, where 32 is the size in pixels of a build tile in
StarCraft (but might be different for other RTS games). The
real size of a building can then be smaller than its build size.
This is actually always the case in StarCraft.

This means that two buildings constructed side by side are
still separated by a gap which may be big enough to let small
units enter, like Zerglings, Marines or Zealots in StarCraft.

The walling problem is an optimization problem de-
scribed as follows: Given a chokepoint and two buildable
tiles s and t (start and target tiles), choose a set of buildings
B and place them on the map such that:

• All buildings of the set are part of a wall (i.e. they are
contiguous), and the tiles s and t are covered by buildings.

• A target optimization function f about the wall may be
minimized. In this paper, we will focus on three different
optimization functions:

– The number of buildings in the wall.
– The number of gaps between buildings which are big

enough to let small units enter.
– The required technology level in the game (in games

like StarCraft, some buildings require technologies that
require resources to acquire, so it is interesting to build
walls with buildings of low technology).

Walling via Constraint Optimization
The approach to walling presented in this paper consists of
three main stages: chokepoint identification, wall specifica-
tion, and wall creation, which correspond, respectively to:
identifying a place in the map where the wall can be created,
determining the exact coordinates where we want to gener-
ate the wall, and finally determining which exact buildings
do we need and in which coordinates. The following sub-
sections describe each of these stages in turn.

Chokepoint Identification
For the chokepoint identification we rely on Perkins algo-
rithm for map decomposition (Perkins 2010) implemented
in the BWTA library. This algorithm decomposes a map into
regions and chokepoints that connect exactly two regions. It
first computes obstacle polygons (representing each of the
non-walkable regions). Then, using the edges of these poly-
gons, a Voronoi diagram of the line segments is generated.
Then after pruning some vertices of the resultant Voronoi di-
agram, the algorithm looks for the vertices with degree two

53

Figure 1: Result of decomposing a map in regions (blue
dots) and chokepoints (red dots) using BWTA

p : chokepoint centerq1, q2 : chokepoint sides

buildable non-buildable non-buildable (but walkable)

Figure 2: Mapping of a portion of a StarCraft map to a grid
of build tiles.

and with a small distance to the nearest obstacle polygon.
Those vertices are marked as chokepoints. The result of de-
composing a map in regions and chokepoints using BWTA’s
implementation of the algorithm is shown in Figure 1.

Although the algorithm used in BWTA is the standard al-
gorithm used in most work using StarCraft, the algorithm
has some false positive and false negative results (i.e. it
marks as chokepoints some areas that would not be consid-
ered as chokepoints by a human, and vice versa). In order
to mitigate these errors we filtered the chokepoints that are
too small (smaller than 3 build tiles) or too big (larger than
12 build tiles) to build a wall or the ones in which building a
wall does not make sense (where there are no buildable cells
around the chokepoint)1.

tsq1 q2p

Figure 3: Determining the start (s) and target (t) coordinates
of a wall when the chokepoint is buildable.

q1 q2p s1 s2t1 t2

Figure 4: Determining the start and target coordinates of a
wall when the chokepoint is non-buildable. There are two
possible walls in this case s1 to t1 and s2 to t2.

Wall Specification
In the second stage, given a chokepoint 〈p, q1, q2〉, where
p are the coordinates of the chokepoint, and q1 and q2 are
the coordinates of the sides of the chokepoint (i.e., the co-
ordinates of the two walls in each side of the chokepoint, as
illustrated in Figure 2), we want to determine the specific
points s and t where the wall should start and end. We dis-
tinguish three main situations:

• Buildable Chokepoint: When all the cells in the grid in
the segments that connect q1 to p and p to q2 (except for
q1 and q2) are buildable. This is the simplest scenario, and
s and t can be determined using the following procedure
(illustrated in Figure 3):

1. Using Bresenham’s line drawing algorithm (Bresen-
ham 1965), we trace a line from q1 to p. The first point
in this line that is buildable is labeled as s.

2. Using Bresenham’s line drawing algorithm (Bresen-
ham 1965), we trace a line from q2 to p. The first point
in this line that is buildable is labeled as t.

• Non-Buildable Chokepoint: When all the cells in the
grid in the segments that connect q1 to p and p to q2 (ex-
cept for q1 and q2) are not-buildable. In this case, the
choke point is walkable, but not-buildable. Therefore, the
wall cannot be built in the chokepoint itself. s and t can
be determined as follows (Figure 4):
1Our modified version of BWTA, that analyze maps off-line,

can be downloaded from: https://bitbucket.org/auriarte/bwta2

54

1. We run a flood-fill algorithm starting from point p to
determine the set of connected (using 4-connectivity)
cells that are not-buildable, but walkable (e.g. the set
of grey coordinates in Figure 4). Let us call this set R.

2. We find the set of buildable cells in the map that have
at least one neighbor (4-connectivity) in R and at least
one neighbor outside of R (the set of dark red cells in
Figure 4). Let us call this set B (border).

3. We split the set B into disjoint sets B1, ..., Bn, such
that all the cells in Bi are neighbors (8-connectivity)
and no cell in Bi is a neighbor of any cell in Bj if i 6= j
(there are two such sets of cells in Figure 4).

4. For each set Bi, determine the two extremes si and ti,
such that si and ti are the pair of points from Bi that
are further from each other that satisfy that they both
have at least one neighbor (8-connectivity) that is not-
buildable and not-walkable. Each of these pairs si, ti
determines the start and target points of a possible wall
(two such walls are found in Figure 4).

Notice that it is theoretically possible to have n > 2, but in
this case more than one wall would be potentially needed
to block the chokepoint. In this situation, we just consider
the chokepoint as not a candidate for blocking with a wall.

• Mixed Chokepoint: Although not common in StarCraft
maps, chokepoints with a mix of buildable and non-
buildable cells in the segments that connect q1 to p and
p to q2 sometimes occur. However, we do not consider
this scenario in our approach.

Given the start and target coordinates of a wall: s, t, we
determine whether the wall is feasible by computing the dis-
tance between s and t. If s and t are too far apart, con-
structing the wall might not bring any significant advantage,
and thus it should not be attempted. On the other hand, if
s and t are too close, there might not be space for placing
buildings, and the wall might not be possible. For the ex-
periments presented in this paper, we only considered those
situations where the following conditions where satisfied:
4 < |tx − sx| ≤ 12 and 3 < |ty − sy| ≤ 9.

Wall Creation
We express walling as a Constraint Optimization Problem
(COP). A COP is a tuple (V , D, C, f) where V is a set
of k variables, D the set of domains of each variable, i.e.,
sets of values that variables can take, C is the set of con-
straints upon V and f : V k → R is a k-ary objective func-
tion to minimize or maximize. A configuration is a mapping
of each variable in V to a value in their domain in D. A
configuration may then satisfy none, some or all constraints
of the COP instance. In this latter case, the configuration is
called a solution.

In (Certicky 2013), a COP is presented to model the
walling problem, where V is the set of buildings that may
compose the wall, D the set of possible positions for each
building of V . Two objective functions fv and fh are present
to respectively minimize the vertical size and the horizontal
size of the largest gaps between buildings. This leads to a
complex multi-objective optimization problem, where goals

do not always prevent foes to go through the wall, but where
an imperfect wall is considered to be better if its largest gap
can let pass only one zergling rather than two side by side.

In this paper, we propose a different approach: V and D
remain respectively the set of buildings we can use to build
the wall and the set of possible positions for these variables,
but we propose a different set of constraints C:
1 Overlap: buildings should not overlap each others.
2 Buildable: buildings can be built on their positions.
3 NoHoles: there should not be any holes of the size of a

build tile (or greater) in the wall.
4 StartingTargetTile: there should have exactly one building

constructed on the starting tile s, and one building (could
be the same) on the target tile t.
Let’s denote by tij the tile at position (i, j) on the map,

with 1 ≤ i ≤ length(map) and 1 ≤ j ≤ height(map).
The special position (0, 0) in D indicates that buildings as-
signed to this position have not been selected to build the
wall. Let isBuildable(tij) be the predicate returning true if
and only if the tile tij is buildable. We denote also by ts and
tt the start and target tile, respectively. Thus, we formally
define our constraints as follows:
Overlap:
∀b1, b2 ∈ V,

∀1 ≤ i ≤ length(b1),

∀1 ≤ j ≤ height(b1),

∀1 ≤ i′ ≤ length(b2),

∀1 ≤ j′ ≤ height(b2),

∃t1, t2 ∈ D s.t.(
b1 6= (0, 0) ∧ b2 6= (0, 0)

)
⇔

(
t111 = b1 ∧ t211 = b2 ∧ t1ij 6= t2

i′j′
)

Buildable:
∀b ∈ V,
∀1 ≤ i ≤ length(b),
∀1 ≤ j ≤ height(b),
∃t ∈ D s.t. (t11 = b)⇔ isBuildable(tij)

For the following constraint, let’s denote by b.x and b.y
respectively the x and y coordinates of a building b, and by
l and h respectively the functions length and height.

NoHoles:

∃bs, bt ∈ V,
[
bs = bt ⇔(

∃b′s, b′t ∈ V, bs 6= b′s, bt 6= b′t, s.t.(
bs.x+ h(bs) + 1 = b′s.x ∨ bs.x = b′s.x+ h(b′s) + 1∨
bs.y + l(bs) + 1 = b′s.y ∨ bs.y = b′s.y + l(b′s) + 1

)
∧(
bt.x+ h(bt) + 1 = b′t.x ∨ bt.x = b′t.x+ h(b′t) + 1∨
bt.y + l(bt) + 1 = b′t.y ∨ bt.y = b′t.y + l(b′t) + 1

))]
∧[
∀b ∈ V, bs 6= b 6= bt, b 6= (0, 0),

∃ba, bb ∈ V, ba 6= b 6= bb, s.t.(
(b.y = ba.y + l(ba) + 1) ∧ (b.x = bb.x+ h(bb) + 1)

)
∨(

(b.x = ba.x+ h(ba) + 1) ∧ (b.x+ h(b) + 1 = bb.x)
)
∨(

(b.x = ba.x+ h(ba) + 1) ∧ (b.y + l(b) + 1 = bb.y)
)
∨(

(b.y = ba.y + l(ba) + 1) ∧ (b.x+ h(b) + 1 = bb.x)
)
∨(

(b.y = ba.y + l(ba) + 1) ∧ (b.y + l(b) + 1 = bb.y)
)
∨(

(b.x+ h(b) + 1 = ba.x) ∧ (b.y + l(b) + 1 = bb.y)
)]

55

StartingTargetTile:

∃b1, b2 ∈ V,
∃1 ≤ i ≤ length(b1),
∃1 ≤ j ≤ height(b1),
∃1 ≤ i′ ≤ length(b2),
∃1 ≤ j′ ≤ height(b2),
∃t1, t2 ∈ D s.t.(
t111 = b1 ∧ t211 = b2

)
⇔
(
t1ij = ts ∧ t2i′j′ = tt

)
Some RTS games might require additional constraints.

For example, if using the Protoss race in StarCraft, one
should add a fifth constraint to consider Pylons.

We propose to use a single function f to minimize chosen
among the three presented above. The most complex and
interesting one is the objective function trying to reduce the
number of gaps in the wall that are big enough to let small
units to pass. This function can be adapted according to the
opponent race. Indeed, the smallest units in the game are
Zerg’s Zergling (16 pixels wide ×16 pixels high), Terran’s
Ghost (15 × 22) and Terran’s Marine and Medic (17 × 20),
and Protoss’ Zealot (23× 19), if we don’t consider Protoss’
Scarab (Reaver’s projectiles, 5 × 5 pixels). In this paper,
experiments are reported assuming a Zerg opponent.

There are few works in RTS game AI using constraint
programming techniques, and even fewer using metaheuris-
tics. Among others, branch and bound algorithms (not
a metaheuristic) have been used to optimize build order
(Churchill and Buro 2011). Genetic algorithms have been
used off-line to optimize build order, but with multiple ob-
jectives, analyzed in (Kuchem, Preuss, and Rudolph 2013)
and a population-based algorithm has been used for multi-
objective procedural aesthetic map generation (Raúl Lara-
Cabrera 2014). To solve our COP instance, again we have
chosen a different technique than in (Certicky 2013). In
that previous work, an ASP logic program has been writ-
ten and is solved by the ASP solver Clingo. Even if it al-
lows finding an optimal solution, time computations may
not fit real-time games like RTS, since their formulation
requires up to 200ms per ASP solver call. In contrast,
in the rules of the annual AIIDE StarCraft competition,
it is clearly specified that a bot where the time computa-
tion during a frame exceeding 55ms more than 200 times
loses automatically the game. In order to have faster op-
timization, we opted for a local search method based on
the Adaptive Search algorithm (Codognet and Diaz 2001;
Caniou et al. 2014), which is up to our knowledge one of
the fastest metaheuristic to solve constraint-based problems.
Even if walling might only be used a few times during a
game, aiming at fast computations is important since our ap-
proach can be used for many other tasks in RTS games, such
as base layout. Thus, one can run our solver to make a wall
at a base entrance, but also to manage building placements
into the base.

The main idea of the Adaptive Search algorithm is the
following one: a cost function is declared for each kind of
constraint in the COP telling how much a constraint is far
to be solved within the current configuration. The output of
such a cost function is a constraint cost. If the cost of a con-
straint c is zero, it means c is currently satisfied. One can

then give a global cost to a configuration, usually by adding
the cost of each constraint in the COP instance. The origi-
nality of Adaptive Search is that it projects constraints cost
on variables, i.e., it sums the cost of all constraints where a
given variable occurs. For instance, if a variable x appears
in constraints c1 and c2 only, then the projected cost on x
will be the cost of c1 plus the cost of c2. This allow the
algorithm to know what variables are the most responsible
for the violation of constraints, and then permit to apply a
sharper variable selection heuristic.

The main problem with metaheuristics is that these meth-
ods can be trapped into a local minimum, i.e., a non-optimal
configuration where there are any local moves leading to a
better configuration. To escape from these situations, one
classical and efficient method is to simply restart the algo-
rithm from a random-selected configuration. Thus, our COP
solver has two different behaviors:

Satisfaction: The user only asks for a wall, without requir-
ing optimization on any of the three objective functions
presented above. In that case the solver tries to find a wall
satisfying our four constraints within one run limited by a
timeout (for instance 20 ms).

Optimization: The user only asks for an optimized wall,
for instance trying to have as few large gaps as possible.
Then, the solver will launch a series of runs limited by
the given timeout (like 20ms), and saves what is the best
solution found so far, according to the objective function.
It stops when: 1) It finds a perfect solution i.e., an op-
timization cost equal to zero (which is not possible for
some objective functions like minimizing the number of
buildings); or 2) It reaches a global timeout, for example
150ms. Launching a series of small runs is important be-
cause it means we can slice a 150ms optimization run into
several 20ms independent pieces that can be executed in
different frames; so that an 150ms optimization run do not
exceed the 55ms limit per frame during competitions.

Experimental Evaluation
This section presents an empirical evaluation of our ap-
proach in the RTS game StarCraft. In this paper, we only
considered Terran buildings without their extensions. The
main goals of our evaluation are: 1) to determine the qual-
ity of solutions that can be achieved under the tight timing
constraints in RTS games, 2) to determine how much can
optimization improve the base solutions provided by a satis-
faction run.

In order to evaluate our approach we used seven maps
from the StarCraft AI competition: Benzene, Aztec, Cir-
cuit Breaker, Python, Heartbreak Ridge, Andromeda, and
Fortress. From each of those maps, we extracted a collec-
tion of chokepoints and employed the methods described in
this paper to determine the start and target coordinates of
the walls. In total this resulted in 48 wall specifications. All
the experiments were executed on a PC with a 2.7GHz Intel
Core i7 and 4GB of RAM, running Ubuntu 12.04 64-bit2.

2Source code can be downloaded from: https://github.com/
richoux/Wall-in

56

Table 1: Overall Experimental Results over 48 different problems, extracted from 7 different maps from the StarCraft AI
competition. Results are the average of 100 runs in each problem (total of 4800 runs per configuration).

#Attempts 1 2 3 4 5 10 20 50
Average Cost 1.59 0.58 0.33 0.18 0.13 0.03 0.01 0.0006
Solved % 45.83% 71.10% 80.70% 88.45% 91.58% 97.23% 99.18% 99.95%

Table 2: Optimization results over 48 different problems, extracted form 7 different maps from the StarCraft AI competition.
Results are the average of 100 runs in each problem (total of 4800 runs per configuration).

Satisfaction run Optimization run Optimization run solved
Optimizing number of buildings (number of buildings) 3.12 2.65 96.83%
Optimizing gaps (number of gaps) 1.19 0.05 96.79%
Optimizing tech-level (average tech level of buildings) 1.95 1.56 95.87%

Table 1 shows the results obtained using satisfaction runs
in the 48 chokepoints using a timeout of 20ms. Specifically,
we show both the average solution cost (0 means that a wall
was found) and the percentage of times that a wall was found
while building walls for the 48 chokepoints. The Average
Cost indicates how far we are from a solution. Thus, the
evolution of this value in Table 1 is more meaningful than
the values themselves. The presented results are the aver-
age of 100 runs. Each column in Table 1 shows the results
when we allow our system to restart a different number of
times. The first column shows results when the solver only
has one attempt (with a timeout of 20ms), solving 45.83%
of the problems. The second column shows results when
our solver has two attempts (each time with a timeout of
20ms), and showing that 71.1% of the times at least one of
the attempts resulted in a solution. As Table 1 shows, when
giving our solver at least 5 attempts, more than 90% of the
problems were solved. This is remarkable, since, due to the
small timeout used, it means that our solver can run once per
game frame. Thus, after 5 game frames (i.e. 0.21 seconds
of gameplay) the probability of having found a solution to
a walling problem is very high. With a higher number of
attempts the probability of success stabilizes at 99.95%.

Table 2 shows the results for optimization runs using the
three different optimization objectives considered in this pa-
per. During these optimization runs, the solver launched a
series of successive runs of 20ms, with a global timeout of
150ms. For each configuration we compare the walls gener-
ated using a satisfaction run versus the walls obtained using
an optimization run. Satisfaction runs have been launched
allowing 8 attempts, so the total computation time is about
160ms, a bit more than for optimization runs. Consider-
ing optimizing the number of buildings, we can see that our
solver was able to reduce the average number of buildings
from 3.12 to 2.65. This means that using optimization we
can reduce the number of buildings to construct, and thus
save a significant amount of resources (gas and minerals).
Similarly, gap optimization can reduce the number of gaps
big enough to let pass a zergling from 1.19 per wall, to 0.05
per wall, thus significantly making the walls more difficult
to penetrate by the enemy. Concretely, satisfaction runs
found 929 perfect walls (without gaps letting small units
pass) among 4609 walls (over 4800 runs), and optimization

runs found 4440 perfect walls among 4646 walls (again over
4800 runs). For tech-level optimization, we classified build-
ings along 4 different tech-levels (command centers and sup-
ply depots have tech-level 0, and all the other buildings have
a higher tech-level depending on their requirements). Op-
timization managed to reduce the average tech level of the
buildings in the wall from 1.95 to 1.56, meaning that the wall
has less restrictions, and thus, can be built earlier.

Conclusions

This paper has presented a constraint optimization approach
to walling in real-time strategy (RTS) games. Walling con-
stitutes a specific case of the general problem of spatial rea-
soning in RTS games, which has not received enough at-
tention in the literature. Our solution is based on Adaptive
Search, and can be configured to generate walls optimizing
different criteria, such as the number of buildings, number
of gaps, or tech-level of the buildings used.

As shown in our empirical evaluation, our approach is
well suited for the real-time nature of RTS games, since
it can generate solutions under tight real-time constraints,
and computation can be easily spread across several game
frames, to improve the probability of finding a solution.

As part of our future work, we would like to improve our
approach to allow for more flexible wall definition. For ex-
ample, instead of specifying concrete starting and target po-
sitions for the wall, we would like to provide a start and
target broad areas, giving the solver more freedom for find-
ing solutions in tight space configurations. Additionally, we
would like to include additional optimization constraints,
such as minimizing the wall cost, or minimizing the amount
of time that would require to build the wall. We would also
like to optimize the solver allowing parallelism following
the parallel scheme proposed in (Caniou et al. 2014), and
incorporate reinforcement learning approaches to tune the
solver’s parameters. We would also like to package the cur-
rent solver into a reusable module for use in StarCraft AI
competition bots. Finally, we are currently exploring other
spatial reasoning problems that could be addressed using ex-
tensions of our current approach.

57

References
Allen, J. F. 1984. Towards a general theory of action and
time. Artificial intelligence 23(2):123–154.
Bresenham, J. E. 1965. Algorithm for computer control of
a digital plotter. IBM Systems journal 4(1):25–30.
Buro, M., and Churchill, D. 2012. Real-time strategy game
competitions. AI Magazine 33(3):106–108.
Buro, M. 2003. Real-time strategy games: a new ai research
challenge. In Proceedings of IJCAI 2003, 1534–1535. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Caniou, Y.; Codognet, P.; Richoux, F.; Diaz, D.; and Abreu,
S. 2014. Large-scale parallelism for constraint-based local
search: The costas array case study. Constraints 19(4):1–27.
Certicky, M. 2013. Implementing a wall-in building place-
ment in starcraft with declarative programming. CoRR
abs/1306.4460.
Churchill, D., and Buro, M. 2011. Build order optimization
in starcraft. Proceedings of AIIDE 14–19.
Codognet, P., and Diaz, D. 2001. Yet another local search
method for constraint solving. In proceedings of SAGA’01,
73–90. Springer Verlag.
Forbus, K. 2008. Qualitative modeling. In Van Harmelen, F.;
Lifschitz, V.; and Porter, B., eds., Handbook of knowledge
representation. Elsevier.
Gerevini, A., and Nebel, B. 2002. Qualitative spatio-
temporal reasoning with rcc-8 and allen’s interval calculus:
Computational complexity. In ECAI, volume 2, 312–316.
Hagelback, J. 2012. Potential-field based navigation in star-
craft. In Computational Intelligence and Games (CIG), 2012
IEEE Conference on, 388–393. IEEE.
Kuchem, M.; Preuss, M.; and Rudolph, G. 2013. Multi-
objective assessment of pre-optimized build orders exem-
plified for starcraft 2. In Computational Intelligence and
Games (CIG).
Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game ai research and competition in starcraft.
IEEE Transactions on Computational Intelligence and AI in
Games (TCIAIG) 5(4):1–19.
Perkins, L. 2010. Terrain analysis in real-time strategy
games: An integrated approach to choke point detection and
region decomposition. In AIIDE, 168–173.
Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A spatial
logic based on regions and connection. KR 92:165–176.
Raúl Lara-Cabrera, Carlos Cotta, A. J. F.-L. 2014. A self-
adaptive evolutionary approach to the evolution of aesthetic
maps for a RTS game. In IEEE World Congress on Compu-
tational Intelligence (WCCI).
Si, C.; Pisan, Y.; and Tien Tan, C. 2014. Automated terrain
analysis in real-time strategy games. In Proceedings of the
9th International Conference on the Foundations of Digital
Games (FGD 2014).
Togelius, J.; Preuss, M.; and Yannakakis, G. N. 2010. To-
wards multiobjective procedural map generation. In Pro-

ceedings of the 2010 Workshop on Procedural Content Gen-
eration in Games, 3. ACM.
Uriarte, A., and Ontañón, S. 2012. Kiting in RTS games
using influence maps. In Eighth Artificial Intelligence and
Interactive Digital Entertainment Conference.

58

