
Improving Terrain Analysis and Applications to RTS Game AI

Alberto Uriarte and Santiago Ontañón
Computer Science Department

Drexel University
{albertouri,santi}@cs.drexel.edu

Abstract

This paper presents a new terrain analysis algorithm for
RTS games. The proposed algorithms significantly im-
proves the analysis time of the state of the art via con-
tour tracing, and also offers better chokepoint detection.
We demonstrate that our approach (BWTA2) is at least
10 times faster than the commonly used BWTA in a
collection of StarCraft maps. Additionally, we show the
usefulness of terrain analysis in tasks such as pathfind-
ing and discuss potential applications to strategic deci-
sion making tasks.

Introduction
In Real-Time Strategy (RTS) games, the map does not have
a fixed configuration like in classic board games such as
Chess or Go. Therefore it is a common practice to analyze
the map in order to generate a qualitative spatial representa-
tion over which to perform reasoning (Forbus, Mahoney, and
Dill 2002). This analysis can help us improve tasks such as
pathfinding and decision making based on the properties of
the terrain. The Brood War Terrain Analysis (BWTA) tool
(Perkins 2010) is used by the majority of the participants
in the StarCraft AI competitions to analyze the game map.
However, this library has very high computational demands,
and often fails to detect all relevant areas of a map.

In this paper we present (1) a new algorithm to terrain
analysis that, given an input map, generates a set of regions
connected by chokepoints (or narrow passages) and (2) an
interface for pathfinding queries. Compared to previous re-
lated work (Perkins 2010; Halldórsson and Björnsson 2015),
our approach is significantly more efficient in terms of exe-
cution time and detects chokepoints and corridors more ac-
curately.

Our algorithm is based in finding the medial axis of the
map using robust algorithms such as contour tracing and
Voronoi diagrams. The proposed algorithm has been pack-
aged into an open-source library1, which also precomputes
common RTS AI tasks like best build locations, closest lo-
cations of several points of interest and pathfinding cache.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Source code and binaries can be found at https://bitbucket.org/
auriarte/bwta2

The remainder of this paper is organized as follows.
First, we provide some background in the context of RTS
games and terrain analysis. Then we introduce our algorithm
called BWTA2 (Brood War Terrain Analysis 2). Finally, we
present our empirical evaluation comparing the map decom-
position of our algorithm to previous work and their appli-
cations in pathfinding and spatial reasoning.

Background
RTS Games
RTS games are a sub-genre of strategy games where players
need to build an economy (gathering resources and building
a base) and military power (training units and researching
technologies) in order to defeat their opponents (destroy-
ing their army and base). One of the particularities of RTS
games is that the games are not played always in the same
map (or board configuration). That requires an extra step to
analyze and understand the properties of each map. While
humans learn how to exploit the map in their advantage and
recognize potential weak spots, AIs agents need tools to an-
alyze the map in order to perform spatial reasoning. Using
bottlenecks as a defending position against larger armies, or
detecting higher grounds to reach farther units, are common
tactics that humans use all the time. In this paper, we im-
prove the state-of-the-art in map decomposition and spatial
tools in order to improve any AI agent. Specifically, we de-
veloped a tool to analyze STARCRAFT maps, a popular RTS
game used as a testbed in the AI research community.

Terrain Analysis
Forbus et al. (2002) showed the importance of analyzing
game maps to have a qualitative spatial representation over
which to perform reasoning. They used a Voronoi diagram
to characterize the free space and use it for pathfinding.

Perkins (2010) developed a library called BWTA that us-
ing a Voronoi diagram as starting point, decomposes a map
into regions and chokepoints. Even if BWTA is one of the
most robust libraries, the decomposition process is slow (it
takes more than one minute to analyze a map), and often
fails to detect some chokepoints.

Higgins (2002) used a different approach than Voronoi di-
agram and presented the idea of auras to expand regions and
find chokepoints. Similarly, Halldórsson et al. (Halldórsson

Artificial Intelligence in Adversarial Games: Papers from the AIIDE Workshop
AAAI Technical Report WS-16-21

15

Figure 1: Aztec STARCRAFT map.

and Björnsson 2015) presented a water level approach
(which it is discrete) to detect the chokepoints in order to use
them as a gateways for the pathfinding heuristic. Although
their approach is faster than Perkins, their algorithm tends to
generate more false negative and false positive chokepoints.

Bidakaew et al. (2016) presented a map decomposition
approach based on finding the medial axis and capable of
detecting small corridors (what they call area chokepoint),
although this approach still detects some false negative/pos-
itive chokepoints.

Brood War Terrain Analyzer 2 (BWTA2)
As mentioned, BWTA is used by the majority of STAR-
CRAFT bots. Therefore, we decided to maintain as much as
possible the same interface as BWTA to facilitate the migra-
tion; and we named our library Brood War Terrain Analyzer
2 (BWTA2) to reflect the improvement over the previous
well known library. Although the algorithm presented in this
paper is different from BWTA, the global steps are similar
to Perkins’ algorithm:

1. Recognize Obstacle Polygons

2. Compute Voronoi Diagram

3. Prune Voronoi Diagram

4. Identify Nodes (Regions and Chokepoints)

5. Extract Region Polygons

For illustrative purposes, we show the result of each step for
the STARCRAFT map Aztec, shown in Figure 1.

Recognize Obstacle Polygons
The first goal is: given a raster image made with pixels (a
map in our case), extract the polygons of the obstacles. This
process called vectorization is a common step in the image
processing community. First of all, we need to convert our

Figure 2: Obstacle polygons detected in gray.

image into a binary image to be able to detect the relevant
shapes we are interested in. To do that, all pixels are marked
as white if they are walkable by a ground unit, and black if
they are not walkable. Moreover, there may be undestroy-
able objects such as neutral buildings that can make a pixel
unwalkable. Now, we apply the component-labeling algo-
rithm using contour tracing technique presented by Chang
et al. (Chang, Chen, and Lu 2004). This algorithm fulfills
two purposes:

1. The contour tracing technique detects the external contour
and possible internal contours of each component, i.e., it
detects the outer ring and inner rings (or holes) of each
obstacle polygon.

2. Each interior pixel of a component is labeled. This will
make any query to get what polygon a pixel belongs to a
O(1) operation.

Now we have the contour of the obstacles as a sequence
of pixels. In order to reduce the number of points that
make up the contour we use the Douglas-Peucker simplifi-
cation (Douglas and Peucker 1973), and after that we iterate
over all simplified points and if the distance to the border is
less than a threshold (2 pixels in our experiments) we move
the point to the border, we call this “anchoring to the bor-
der”. This last step is to ensure that all the obstacle polygons
remain attached to the borders after the simplification. This
polygon simplification will help us to reduce the computa-
tion complexity of the Voronoi diagram. Figure 2 shows the
obstacles detected for the Aztec map.

Compute Voronoi Diagram
In order to improve BWTA, BWTA2 has as secondary goal
to reduce the library dependencies, therefore we tried to
avoid to use the Computational Geometry Algorithms Li-
brary (CGAL) to compute the Voronoi diagram. Instead,

16

Figure 3: Voronoi diagram of walkable areas.

we use the implementation in the Boost library (CGAL de-
pends on Boost and other libraries to work). Boost uses For-
tune’s sweep-line algorithm (Fortune 1986) to compute the
Voronoi diagram, while CGAL uses an incremental algo-
rithm (Karavelas 2004) that allows to add segments that may
intersect at their interior (with a performance penalty). Since
we know all the segments beforehand and all the polygons
are ensured to be simple thanks to the polygon simplification
step, we can use the sweep-line algorithm that significantly
outperforms the incremental one used by BWTA. In order to
avoid infinite Voronoi segments, we also add the necessary
segments to close the border of the map (not drawn in our
Figures). Boost returns the Voronoi diagram as a half-edge
data structure. For our purposes we simplify this structure
to a regular graph represented by an adjacency list. We only
add to the graph the Voronoi points that do not lie inside of
an obstacle polygon. Figure 3 shows our computed Voronoi
diagram.

Prune Voronoi Diagram
In this step we want to compute the medial axis given the
Voronoi diagram by removing the “hairs” of the Voronoi di-
agram. To do this, we compute the distance to the closest ob-
stacle for each vertex in our graph. These queries can be op-
timized using a R-tree structure (Guttman 1984) with a pack-
ing algorithm (Leutenegger, Lopez, and Edgington 1997).
Adding all the segments to the R-tree will let us perform a
query to know the closest obstacle of a point, let us call this
the radius of the vertex. Now, we use all the leaf vertices
in the graph to initialize the list of candidate vertices to be
pruned. Each vertex in the list is evaluated once, if the vertex
is too close to an obstacle (has a radius less than 5 pixels) or
if the parent is farther to an obstacle, we remove the vertex
and the edge. After removing the edge, if the parent vertex
becomes a leaf, we add it to the list of candidate vertices to

Figure 4: Medial axis from pruning the Voronoi diagram.

be pruned. Figure 4 shows how the resulting medial axis still
captures the structure of the map but with less complexity.

Identify Nodes (Regions and Chokepoints)
Now we identify all local maxima, i.e., vertices whose radius
is bigger than any of their neighbors. Notice that this corre-
sponds to the biggest inscribed circle of a region; and all
local minima, i.e., vertices whose radius is smaller than its
neighbors, are chokepoints of the map or narrow passages.
Our proposed algorithm only iterates once over each vertex,
and therefore it has a O(|V |) time complexity. Starting from
a leaf vertex, we mark that vertex as a region node (after the
pruning, all remaining leaf vertices are local maxima) and
we add its children to the list of vertices to explore. Then for
each vertex in the list we proceed as follows:

1. We add all unvisited children to the list of vertices to ex-
plore.

2. If the vertex has a degree other than two, we mark it as a
region node since it is a leaf or an intersection point.

3. When a vertex has two children and it is a local minima, if
the parent is also a local minima we mark as a chokepoint
node only the vertex with the smallest radius, otherwise
we mark the current vertex as a chokepoint node.

4. In the other hand, when a vertex with two children is a
local maxima, if the parent is a local maxima we mark as
a region node the vertex with the biggest radius, otherwise
the current vertex is marked as a region node.

The next step is to simplify our graph, first we create a new
graph with only the marked nodes (region or chokepoint)
and their connections; and then since all paths must alter-
nate between a chokepoint and a region node, all connected
regions (those that are intersections with another region) are
merged, keeping only the region with the biggest radius. Our
presented algorithm is more efficient than the one presented

17

Figure 5: Final nodes detected (chokepoints in red and center
of regions in blue).

by Perkins since we only visit the vertices |V | + |V | + |N |
(the first time to mark the nodes, the second time to sim-
plify the graph to N nodes, and the third time to merge
consecutive regions). Figure 5 shows the region nodes (blue
dots) and chokepoints nodes (red dots) identified by our al-
gorithm.

Extract Region Polygons
Once the chokepoints nodes have been identified, we use the
previous R-tree structure to do an iterative query to find the
two obstacle points that crosse each chokepoint node. Now,
to generate the region polygons we start with a square cover-
ing the whole map and we compute the difference with the
obstacle polygons to generate the walkable polygons. And
finally we compute the difference of walkable polygons and
the chokepoints segments to split them into the region poly-
gons. Figure 6 shows the final region division. As a final
step, we generate our internal data structure where each Re-
gion has its own polygon, the center point from the region
node (notice that this position is ensured to fall inside the
polygon in opposition to a centroid of a polygon), and a set
of adjacent Chokepoints. And each Chokepoint has a seg-
ment, a middle point and two connected Regions.

Extra cache operations for AI queries
BWTA2 performs several extra computations to speed up
common operations that most AI agents use.
• A component-labeling algorithm is performed to the

walkable pixels in order to know what regions are con-
nected and which ones are islands.

• We identify all potential locations to build a base. To op-
timize resource gathering, bases are located equidistant to
a cluster of resources. We identify cluster of resources us-
ing a DBSCAN algorithm (Ester et al. 1996) with the fol-

Figure 6: Map decomposed in regions.

lowing constraints: the minimum distance to a group re-
sources is 6 build-tiles, the minimum resource cluster size
to be considered is 3. After that, for each cluster we find
the build location that it is equidistant to each resource in
the cluster.

• Despide decades of research, pathfinding is still an ex-
pensive computation and an open research area. BWTA2
implements HPA* (Botea, Mueller, and Schaeffer 2004)
which uses the concept of rooms and gates as a higher-
level structure to perform the search. Here, we use our
division of regions and chokepoints as an abstraction for
our search. The idea of using smart terrain decomposi-
tion for pathfinding was also explored by Halldórsson et.
al. (2015). One of the major speedups of the algorithm
is achieved by caching the distance between all gates (or
chokepoints in our case).

• Closest point of interest. A common query is the distance
to a closest object (base location, chokepoint, ...). A multi-
seed flood-fill algorithm is performed for each relevant
object. The idea of a multi-seed flood-fill algorithm is to
initialize a FIFO list with the different seed positions and
use this list to pop the next position to check and push the
following positions to explore; we also customized it to
increase the cost once a position switches from walkable
to unwalkable for the first time. Hence, the result shows
the closest object for a ground unit. Figure 7 shows the
closest distance to a base location.

Experimental Evaluation
We compare the algorithm presented in this paper (BWTA2)
against BWTA, since this is the only open source state-
of-the-art algorithm. We analyzed 3 different popular maps
used in the STARCRAFT AIIDE competition that cover dif-
ferent map size ranges: Heartbreak Ridge, Benzene and

18

Figure 7: Multi-seed flood-fill distance to closest base loca-
tion.

Table 1: Time in seconds to analyze each map by BWTA
and BWTA2.

Map Name Map Size BWTA BWTA2
Destination 128x96 54.15 3.53
Heartbreak Ridge 128x96 53.55 4.32
Benzene 128x112 55.82 5.87
Aztec 128x128 66.83 5.39

Aztec. We compare the time to analyze the map by each al-
gorithm. Table 1 shows that our proposed algorithm is more
than 10 times faster than BWTA, and it only takes less than
6 seconds to analyze complex maps.

In the other hand our approach does a better job finding
chokepoints, specially long corridors or small symmetric re-
gions. Figure 8 shows the chokepoints detected by BWTA2
in red (regions in blue are not merged); Figure 9 shows
the chokepoints detected by BWTA in red and the missing
chokepoints that BWTA2 was able to find in green. As men-
tioned, the missing points are long thin corridors or small
regions with two chokepoints. Since regions are symmetri-
cal, we can observe how sometimes BWTA detects the same
chokepoints in the symmetric region and other times it only
detects one of the chokepoints.

Applications to Pathfinding
The most common use of terrain analysis is for pathfind-
ing or navigation. As we mentioned there are several al-
gorithms capable of using the information of terrain anal-
ysis to guide the pathfinding search. BWTA2 implements
the idea of HPA* (Botea, Mueller, and Schaeffer 2004) to
use the chokepoints as gates. Besides the algorithm being
near-optimal, in RTS games we can have hundred of units

Figure 8: Chokepoints in red detected by BWTA2.

Figure 9: Chokepoints (detected in red, missing in green) by
BWTA.

computing distance checks, usually for planning a long-term
plan, therefore a fast approximation like HPA* is perfect for
our case. Keep in mind that the environment in RTS games
is dynamic (i.e., changes can occur while units are moving),
the navigation system should be combined with a reactive
one capable of handling the frame-by-frame unit control.
Here we are only considering path planning. Table 2 shows a
time comparison in ms between A* and HPA* implemented
in BWTA2, showing that HPA* can be 64 times faster than
A*; a significant difference, specially important in games
with a lot of units moving in real-time.

Applications to Strategic Decision Making
Lidén (2002) showed how terrain analysis can help other
tasks beyond pathfinding. Chokepoints or waypoints can be
used as key points to calculate visibility to perform an intel-
ligent attack positioning such as flanking or squad coordina-

19

Table 2: Time in milliseconds to compute the distance be-
tween bases in Aztec map.

Tile Positions A* HPA*
(9,84) and (69,7) 41.13 0.95
(9,84) and (118,101) 46.72 0.73
(69,7) and (118,101) 41.38 1.09

tion.
Additionally, we presented how to detect potential base

locations to decide the next base expansion. Quantifying
the tactical importance of each region can help establish the
most profitable location from the point of view of map con-
trol, or which the best enemy base to attack. Finding the
closest relevant object is an expensive query executed sev-
eral times during a game. We cached these queries to im-
prove the overall AI agents performance.

Finally, another application of terrain analysis is game
tree search. For example, Uriarte and Ontañón (2014) used
a map decomposition as a way to define an abstraction over
which to employ Monte Carlo Tree Search.

Conclusions
This paper introduced BWTA2, a new algorithm that im-
proves the state-of-the-art of terrain analysis reducing con-
siderably the computational time of map analysis. Addition-
ally, it produces a better map decomposition detecting more
meaningful chokepoints and offers better tools for AI agents.
The algorithm has been implemented into an open-source li-
brary, available to the research community.

As a part of future work we want to consider unwalkable
areas during the analysis, in order to produce safe paths for
air units, or help transports make better decisions (a common
example is to use an air transport to help ground units to
cross a cliff and avoid a strong defended chokepoint).

References
Bidakaew, W.; Sompagdee, P.; Ratanotayanon, S.; and Vi-
chitvejpaisal, P. 2016. Rts terrain analysis: An axial-based
approach for improving chokepoint detection method. In
Knowledge and Smart Technology, 228–233.
Botea, A.; Mueller, M.; and Schaeffer, J. 2004. Near op-
timal hierarchical path-finding. Journal of Game Develop-
ment 1(1):1–22.
Chang, F.; Chen, C.-J.; and Lu, C.-J. 2004. A linear-
time component-labeling algorithm using contour tracing
technique. Computer Vision and Image Understanding
93(2):206–220.
Douglas, D. H., and Peucker, T. K. 1973. Algorithms for
the reduction of the number of points required to represent
a digitized line or its caricature. Cartographica: The Inter-
national Journal for Geographic Information and Geovisu-
alization 10(2):112–122.
Ester, M.; Kriegel, H.; Sander, J.; and Xu, X. 1996. A
density-based algorithm for discovering clusters in large

spatial databases with noise. In Knowledge Discovery and
Data Mining, 226–231.
Forbus, K. D.; Mahoney, J. V.; and Dill, K. 2002. How
qualitative spatial reasoning can improve strategy game AIs.
IEEE Intelligent Systems 17(4):25–30.
Fortune, S. 1986. A sweepline algorithm for Voronoi di-
agrams. In Symposium on Computational Geometry, 313–
322. ACM.
Guttman, A. 1984. R-trees: A dynamic index structure for
spatial searching. In International Conference on Manage-
ment of Data, 47–57. ACM.
Halldórsson, K., and Björnsson, Y. 2015. Automated de-
composition of game maps. In AIIDE, volume 15, 122–127.
Higgins, D. 2002. Terrain analysis in an rts - the hidden
giant. Game Programming Gems 3 268–284.
Karavelas, M. I. 2004. A robust and efficient implemen-
tation for the segment Voronoi diagram. In Int. Symp. on
Voronoi Diagrams in Science and Engineering, 51–62.
Leutenegger, S.; Lopez, M. A.; and Edgington, J. 1997.
STR: a simple and efficient algorithm for R-tree packing. In
International Conference on Data Engineering, 497–506.
Lidén, L. 2002. Strategic and tactical reasoning with way-
points. AI Game Programming Wisdom 211–220.
Perkins, L. 2010. Terrain analysis in real-time strategy
games: An integrated approach to choke point detection and
region decomposition. In AIIDE. AAAI Press.
Uriarte, A., and Ontañón, S. 2014. High-level representa-
tions for game-tree search in RTS games. In AIIDE.

20

