
Improving Monte Carlo Tree Search Policies in StarCraft
via Probabilistic Models Learned from Replay Data

Alberto Uriarte and Santiago Ontañón
Computer Science Department

Drexel University
{albertouri,santi}@cs.drexel.edu

Abstract

Applying game-tree search techniques to RTS games
poses a significant challenge, given the large branching
factors involved. This paper studies an approach to in-
corporate knowledge learned offline from game replays
to guide the search process. Specifically, we propose
to learn Naive Bayesian models predicting the proba-
bility of action execution in different game states, and
use them to inform the search process of Monte Carlo
Tree Search. We evaluate the effect of incorporating
these models into several Multiarmed Bandit policies
for MCTS in the context of STARCRAFT, showing a
significant improvement in gameplay performance.

Introduction
Real-Time Strategy (RTS) games provide a popular and
challenging domain for research in Artificial Intelligence
(AI) (Buro 2003). One of the reasons RTS games are
hard is because the branching factor they involve is very
large (Ontañón et al. 2013). Even Monte Carlo tree search
(MCTS) approaches (used successfully in complex games
like Go) do not scale well. Past approaches to this prob-
lem have explored abstractions (Kovarsky and Buro 2005;
Uriarte and Ontañón 2014), portfolios (Churchill and Buro
2013; Barriga, Stanescu, and Buro 2015), hierarchical
search (Stanescu, Barriga, and Buro 2014), or a combina-
tion of the previous ones (Ontañón and Buro 2015).

In this paper we explore an approach to improve the per-
formance of MCTS approaches in STARCRAFT based on
modeling the behavior of human experts. Specifically, we
present a supervised probabilistic model of squad unit be-
havior, and show how to train this model from human re-
play data. This model captures the probability with which
humans perform different actions in different game circum-
stances. We incorporate this model into the policies of a
MCTS framework for STARCRAFT to inform both the tree
policy and the default policy significantly outperforming a
baseline MCTS approach.

The remainder of this paper is organized as follows. First,
we provide some background in the context of RTS games
and MCTS. Then we introduce a methodology to capture the

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

behavior of human experts and how to apply it into different
policies of a MCTS framework. Finally, we present our em-
pirical evaluation in STARCRAFT (a popular RTS game).

Background
RTS games are a sub-genre of strategy games where players
need to build an economy (gathering resources and building
a base) and military power (training units and researching
technologies) in order to defeat their opponents (destroy-
ing their army and base). The challenges in RTS games not
present in other traditional board games are: they are simul-
taneous move games (more than one player can issue actions
at the same time), they have durative actions (actions are not
instantaneous), they are real-time (each player has a very
small amount of time to decide the next move), they are par-
tially observable (players can only see the part of the map
that has been explored), they might be non-deterministic
(some actions have different outcomes), and they have a
large search space (the number of possible board configu-
rations). However, in this paper, we will only consider fully
observable settings.

In this paper we focus on techniques to mitigate the large
branching factor in games like STARCRAFT (showed to be
between 1050 and 10200 when units can be controlled simul-
taneously (Ontañón et al. 2013)). As a reference, the branch-
ing factor of Go is around 250. Specifically, we present some
enhancements that can be applied in MCTS policies.

The main concept of MCTS is that the value of a state
may be approximated using repeated stochastic simulations
from the given state until a terminal state (or until a termina-
tion condition is met) (Browne et al. 2012). During search,
MCTS employs two different policies:
• The tree policy is used to determine which node to expand

next in the search tree and balances the exploration (look
in areas that have not been explored yet) and exploitation
(look at the most promising areas of the tree);

• the default policy used to simulate games until a terminal
node is reached. The simplest default policy that can be
used to run the simulations is selecting uniformly random
actions for each player.

The main idea of this paper is to inform these policies with
prior knowledge to bias the search towards the most proba-
ble (and promising) areas. This idea has already been ap-

Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

100

plied with success in other games like Poker or Go. In
Poker, Ponsen et al. (2010) learned an opponent model to
bias the tree policy. Coulom (2007) calculated the Elo rat-
ing in Go to inform both policies (tree and default), Gelly
and Silver (2007) experimented with combining offline re-
inforcement learning knowledge and online sample-base
search knowledge; this idea was further explored later in Al-
phaGo (Silver et al. 2016). In our previous work, we showed
this can also improve small-scale RTS gameplay (Ontañón
2016). In this paper, we show how this idea can be scaled
up to large RTS games, such as STARCRAFT, and how can
replay data be used to generate the required training set.

Modeling Squad Behavior in StarCraft
The main idea of our approach is to add offline knowledge
from human experts into MCTS. In order to do that, we
use an abstract representation of the game state to group
units into “squads”, then we define a squad-action proba-
bility model, and we show how to learn it from data.

Game State Abstraction

We use the same abstraction proposed by Uriarte and
Ontañón (2014), where the map is represented as a graph
where each node corresponds to a region (the region de-
composition is performed by the library BroodWar Terrain
Analyzer BWTA (Perkins 2010)), and edges represent ad-
jacent regions. Additionally, all the units of the same type
inside each region are grouped together into “squads”; and
each “squad” has the following information: Player (owner
of the squad), Type (type of units in the squad), Size (number
of units), Average HP (average hit points of all units in the
squad), Region (which region is this squad in), Action (which
action is this squad currently performing), Target (the target
region of the action, if applicable), and End (in which game
frame is the action estimated to finish).

The possible actions that a “squad” can perform are: Move
(to an adjacent region), Attack (all the enemies in the current
region), and Idle (do nothing during 400 frames). This ab-
straction has been observed to reduce the branching factor
of states that using the raw game state of STARCRAFT have
a branching factor of the order of 10300 to 1010 (Uriarte and
Ontañón 2014).

We extend this abstraction by distinguishing between dif-
ferent types of Move actions. Specifically, for each Move ac-
tion, we define the following set of boolean features depend-
ing on the properties of the target region to move:

• To Friend: whether the target region has friendly units.

• To Enemy: whether the target regions has enemy units.

• Towards Friend: whether the target region is closer to a
friendly base than the current one.

• Towards Enemy: whether the target region is closer to a
enemy base than the current one.

Notice that these features are not mutually exclusive, i.e., all
16 combinations are possible.

Squad-Action Naive Bayes Model
This model captures the probability distribution by which
human experts perform each of the given actions in a given
situation and given the actions that are legal for a given
squad. As defined in the previous subsection, the set of
all possible action types T a squad can perform (Idle, At-
tack and Move (toFriend, toEnemy, towardsFriend, toward-
sEnemy) contains 18 different action types (we distinguish
Move actions by their features (described above), since there
are 24 different Move actions, the total number of different
action types a squad can perform is 2+24 = 18). Moreover,
in a given game situation the set of actions a squad can per-
form is bounded by the number of adjacent regions to the re-
gion at hand, and there might be more than one squad action
with the same action type (e.g., there might be more than one
adjacent region characterized by the same move features).
Let us define T = {t1, ..., t18} to be the set of action types
that squads can perform, and letAs = {a1, ..., an} to be the
set of squad actions a squad can perform in a given game
state s (we call this the set of legal actions), where we write
the type of an action as type(a) ∈ T . Now, let X1, ..., X18

be a set of Boolean variables, where Xi represents whether
in the current state s, the squad at hand can perform an ac-
tion of type ti. Moreover, variable T denotes the type of the
action selected by the squad in the given state (T ∈ T), and
A denotes the actual action a squad will select (A ∈ As).
Then, we will use the conditional independence assumption,
usually made by Naive Bayes classifiers, that each variable
Xj is conditionally independent of any other variable Xi

given T , to obtain the following model:

P (T |X1, . . . , Xn) =
1

Z
P (T)

n∏
j=1

P (Xj |T)

where Z is a normalization factor, P (T = ti) is the prob-
ability of a squad to choose action of type ti given that
Xi = true , and P (Xj |T) is the probability distribution of
feature Xj , given T . Below we will show how to estimate
these probability distributions from replay data.

Finally, since there might be more than one action in As

with the same given action type (e.g., there might be two
regions a squad can move to characterized by the same fea-
tures), we calculate the probability of each action as:

P (A|X1, . . . , Xn) =
P (type(A)|X1, . . . , Xn)

|{a ∈ As|type(a) = type(A)}|

Training Data
To be able to learn the parameters required by the model,
we need a dataset of squad actions. We extracted this infor-
mation from professional human replays. Extracting infor-
mation from replay logs has been done previously (Weber
and Mateas 2009; Synnaeve and Bessière 2012; Uriarte and
Ontañón 2015). To generate the required dataset we built a
parser that, for each replay, proceeds as follows1:

1Source code of our replay analyzer, along with our dataset ex-
tracted from replays, can be found at https://bitbucket.org/auriarte/
bwrepdump

101

• First, at each time instant of the replay, all units with the
same type in the same region are grouped into a squad.

• Second, for each region with a squad, the set of legal ac-
tions is computed.

• Third, the action that each unit is performing is trans-
formed to one of the proposed high-level actions (if pos-
sible). For example, low-level actions like Move, En-
terTransport, Follow, ResetCollision or Patrol become
Move. In the case of the high-level action Move, the target
region is analyzed to add the region features to the action.

• Fourth, the most frequent action in each squad is consid-
ered to be the action that squad is executing.

• Finally, for each squad and each time instant in a replay,
we compute its squad state as s = (g, r, t, T,A) where g
is the unit’s type of the squad, r is the current region of
the squad, t is the type of the action selected, T is the set
of types of the legal actions at region r, andA is the actual
set of legal actions at region r.
Each time that the state of a squad changes in a replay (or

a new squad is created), we record it in our dataset, and it
constitutes one of the training instances.

Once we have the training set S = {s1, . . . , sm}, we can
use the Maximum Likelihood Estimation (MLE) to estimate
the parameters of our model as:

P (T = t) =
|{s ∈ S|s.t = t}|
|{s ∈ S|t ∈ s.T}|

P (Xj = true|T = t) =
|{s ∈ S|s.t = t ∧ tj ∈ s.T}|

|{s ∈ S|s.t = t}|

Informed Monte Carlo Tree Search
We incorporated the model described above into MCTS, a
family of planning algorithms based on sampling the de-
cision space rather than exploring it systematically. As de-
scribed above, MCTS employs two different policies to
guide the search: a tree policy and a default policy. The
squad-action probability model learned above can be used
in MCTS in both policies.

Moreover, while a squad-action probability model can be
used directly as a default policy, to be used as a tree policy,
it needs to be incorporated into a multi-armed bandit policy.

Informed ε-Greedy Sampling
The tree policy of MCTS algorithms is usually defined as
a multi-armed bandit (MAB) policy. A MAB is a problem
where, given a predefined set of actions, an agent needs to
select which actions to play, and in which sequence, in order
to maximize the sum of rewards obtained when perform-
ing those actions. The agent has no information of the ex-
pected reward of each action initially, and needs to discover
them by iteratively trying different actions. MAB policies
are algorithms that tell the agent which action to select next,
by balancing exploration (when to select new actions) and
exploitation (when to re-visit actions that had already been
tried in the past and looked promising).

MAB sampling policies traditionally assume that no a pri-
ori knowledge about how good each of the actions are exists.

For example, UCT (Kocsis and Szepesvári 2006), one of the
most common MCTS variants, uses the UCB1 (Auer, Cesa-
Bianchi, and Fischer 2002) sampling policy, which assumes
no a priori knowledge about the actions. A key idea used
in AlphaGO is to employ a MAB policy that incorporated a
prior distribution over the actions into a UCB1-style policy.
Here, we apply the same idea to ε-greedy.

As any MAB policy, Informed ε-greedy sampling will be
called many iterations in a row. At each iteration t, an action
at ∈ A is selected, and a reward rt is observed.

Given 0 ≤ ε ≤ 1, a finite set of actions A to choose
from, and a probability distribution P , where P (a) is the a
priori probability that a is the action an expert would choose,
Informed ε-greedy works as follows:

• Let us call rt(a) to the current estimation (at iteration t)
of the expected reward of a (i.e., the average of all the
rewards obtained in the subset of iterations from 0 to t−1
where awas selected). By convention, when an action has
not been selected before t we will have rt(a) = 0.

• At each iteration t, action at is chosen as follows:

– With probability ε, choose at according to the proba-
bility distribution P .

– With probability 1 − ε, choose the best action so far:
at = argmaxa∈Art(a) (ties resolved randomly).

When P is the uniform distribution, this is equivalent to
the standard ε-greedy policy. We will use the acronym NB-
ε to denote the specific instantiation of informed ε-greedy
when using our proposed Naive Bayes model to generate
the probability distribution P .

Best Informed ε-Greedy Sampling
Best Informed ε-Greedy Sampling is a modification over the
previous MAB policy, that treats the very first iteration of
the MAB as a special case, Specifically, at each iteration t,
action at is chosen as follows:

• If t = 0, choose the most probable action at given the
probability distribution P : at = argmaxa∈AP (a).

• Else, use regular Informed ε-Greedy Sampling.

Our experiments show that this alternative MAB policy is
very useful in cases where we have a very small computation
budget (e.g., in the deeper depths of the MCTS tree), and
thus, seems very appropriate to real-time games.

We will use the acronym BestNB-ε to denote the specific
instantiation of best informed ε-greedy when using our pro-
posed Naive Bayes model to generate the distribution P .

Other MAB Sampling Policies
The idea of incorporating predictors (probabilistic or not)
has been explored in the past in the context of many other
MAB sampling policies. For example, PUCB (Predictor +
UCB) (Rosin 2010) is a modification of the standard UCB1
policy incorporating weights for each action as provided by
an external predictor (such as the one proposed in this pa-
per). Chaslot et al. (2007) proposed two progressive strate-
gies that incorporate a heuristic function over the set of ac-
tions that is taken into account during sampling. Another ex-

102

ample is the sampling policy used by AlphaGO (Silver et al.
2016), which is related to both progressive strategies.

One problem of UCB-based policies is that they require
sampling each action at least once. In our setting, however,
there might be nodes in the MCTS tree with a branching fac-
tor larger than the computational budget, making those poli-
cies inapplicable. An exception is PUCB, which is designed
for not having to sample each action once. We experimented
with PUCB in our application domain with very poor results.
However, since even if PUCB does not require to sample all
the actions once, it still requires to reevaluate the value of
each action in order to find the action that maximizes this
value. Given the large branching factor in our domain, this
resulted in impractical execution times, which made us only
consider ε-greedy-based strategies. As explained below, as
part of our future work, we would like to explore additional
policies taking into account the particularities of our domain.

Informed MCTSCD in StarCraft
In order to incorporate our informed MCTS approach into
an actual STARCRAFT playing bot, we followed the same
steps described in (Uriarte and Ontañón 2014). To do so,
we need to: (1) define a mapping between low-level STAR-
CRAFT states and high-level states using the game state and
action abstraction presented at the beginning of this paper;
(2) use a MCTS algorithm that can handle durative ac-
tions and simultaneous moves (we used MCTSCD (Uri-
arte and Ontañón 2014)), (3) use our proposed squad-action
Naive Bayes model to inform the default and tree policies in
MCTSCD; (4) map the best high-level action selected back
to a low-level action.

Concerning mapping low-level states to high-level states
and actions, most STARCRAFT bots are decomposed in sev-
eral individual agents that perform different tasks in the
game, such as scouting or construction (Ontañón et al.
2013). One of such agents is typically in charge of com-
bat units, and is in charge of controlling a military hierar-
chy architecture. This agent usually uses the intermediate
concept of squads to control groups of units. However, this
agent might group units in a different way that our desired
high-level abstraction. Therefore we need to map each unit’s
agent group to its high-level squad. Notice that this mapping
might not be one to one since a group of units crossing a
chokepoint will be split in two abstract squads (one for each
region); and groups with a mix of unit types will be split in
one abstract squad for each unit type.

Once we have a high-level game state, we use an in-
formed MCTSCD to search the beast action for each group.
Informed MCTSCD is an extension of MCTSCD that uses
our presented squad-action Naive Bayes model to inform the
policies (tree and default). Since RTS games are real-time,
we perform a search process periodically, and after each
search, the action associated with each squad is updated with
the result of the search.

Experimental Evaluation
In order to evaluate the performance of informed MCTSCD
we performed a set of experiments using our STARCRAFT

bot (Uriarte and Ontañón 2012) that uses the proposed in-
formed MCTSCD to command the army during a real game.

Experimental Setup
Dealing with partial observability, due the fog of war in
STARCRAFT, is out of the scope of this paper. Therefore,
we disabled fog of war in order to have perfect information
of the game. We also limited the length of a game to avoid
situations where bots are unable to win because they cannot
find all the opponent’s units (STARCRAFT ends when all the
opponent’s buildings are destroyed). In the STARCRAFT AI
competition the average game length is about 21,600 frames
(15 minutes), and usually the resources of the initial base
are gone after 26,000 frames (18 minutes). Therefore, we
decided to limit the games to 20 minutes (28,800 frames). If
we reach the timeout we consider the game a tie.

In our experiments, we performed one call to informed
MCTSCD every 400 frames, and pause the game while the
search is taking place for experimentation purposes.

Informed MCTSCD has several parameters which we set
as follows: for any policy using an ε-greedy component ε
is set to 0.2; to decide the player in a simultaneous node
we use an Alt policy (Churchill, Saffidine, and Buro 2012)
that alternate players; the length of playouts (or simulations)
is limited to unfold until 2,880 frames (2 minutes of game-
play; this number is extracted from an empirical evaluation
described in the next subsection) or until a terminal node is
reached (and with a general timeout of 28,800 frames); and
as a forward model for playouts (or “simulator”) we use the
Decreasing DPF model (where the DPF of an army is de-
creased every time a unit is killed) using a learned Borda
Count target selection policy (Uriarte and Ontañón 2016).
We experimented with executing informed MCTSCD with
a computational budge from 1 to 10,000 playouts; and with
the following configurations of (tree policy, default policy):
• (ε, UNIFORM). Our baseline using an ε-greedy for the

tree policy, and a uniform random default policy.
• (ε, NB). Same as previous but changing the default policy

to our proposed Squad-Action Naive Bayes Model.
• (NB-ε, NB). An informed ε-greedy sampling, that uses our

proposed Squad-Action Naive Bayes Model to generate
the probability distribution P , for the tree policy.
• (BestNB-ε, NB). For this configuration we changed the

tree policy to use a best informed ε-greedy sampling with
the Squad-Action Naive Bayes Model.
We used the STARCRAFT tournament map Benzene for

our evaluation and we ran 100 games with our bot playing
the Terran race against the built-in Terran AI of STARCRAFT
that has several scripted behaviors chosen randomly at the
beginning of the game.

Results
In our first experiment we evaluated the performance of
MCTSCD with playouts (or simulations) of different du-
rations. The computational budget of MCTSCD was fixed
to 1,000 playouts, and we used standard ε-greedy for the
tree policy and a uniform distribution as the default policy.

103

��

���

���

���

���

���

���

���

� � � �� �� �� ��
�
��
�
��
�
��
��
��
��
��
��
��
��
��
��
�

W
in

%

Length of Playouts (frames)

Figure 1: Win % using a MCTSCD with an ε-greedy tree
policy and a uniform random default policy.

��
���
���
���
���
���
���
���
���
���

����

� � � �� �� �� ��
�
��
�
��
�
��
��
��
��
��
��
��
��
�

W
in

%

Playouts

�, UNIFORM
�, NB

NB-�, NB
BestNB-�, NB

Figure 2: Comparison of Win % using a MCTSCD with dif-
ferent policies (tree policy, default policy).

Intuitively, increasing the length of playouts, increases the
lookahead of the search. As we can observe in Figure 1, per-
formance is very low if playout length is kept below 100
frames. It increases exponentially between 100 up to 2,880
frames (from ≈ 4 seconds to 2 minutes), and after that the
performance start to degrade. Our hypotheses concerning
the performance degradation after 2,880 frames is because
of the inaccuracies in our forward model. For example, the
forward model used, does not simulate production, so after
2 minutes of playout simulation, the resulting state would be
probably different from the actual state the game will be in
after 2 minutes given that no new units are spawned during
playouts. Secondly, our forward model is only an approxi-
mation, and the slight inaccuracies in each simulation over a
chain of approximate combat simulations can compound to
result into very inaccurate simulations.

Figure 2 shows the win % (i.e., wins without reaching the
timeout) using several tree and default policies for differ-
ent computation budgets. Starting from the extreme case of
running MCTSCD with a single playout (which basically
would make the agent just play according to the tree pol-
icy, since the first child selected of the root node will be the
only one in the tree, and thus the move to be played), all
the way to running 10,000 playouts. Playout length was set

������
������
������
������
������
������
������
������
������

� � �� �� �� ��
�
��
�
��
�
��
��
��
��
��
��
��
��
�

A
vg

F
ra
m
e

Playouts

�, UNIFORM
�, NB

NB-�, NB
BestNB-�, NB

Figure 3: Comparison of average frames it took to win a
game using a MCTSCD with different policies (tree policy,
default policy). Lower is better.

to 2,880 frames. As expected, as the number of playouts in-
creases, performance also increases. Moreover, we can ob-
serve a significant difference between using a standard ε-
greedy tree policy (ε), which achieves a win % of about 70%
when using 10,000 playouts, and using an informed tree pol-
icy (BestNB-ε or NB-ε), which achieve a win % of 90% and
85% respectively. Additionally, using informed tree policies,
we reach a win % of about 80% by using as few as just 40
playouts (which is a surprisingly low number!). This shows
that the probability distribution captured by the Naive Bayes
model can significantly help MCTSCD during the search
process in guiding the search toward promising areas of the
search tree. On the other hand, the performance difference
between using an informed default policy or not (NB vs UNI-
FORM) is not very large.

Figure 3 shows the average amount of time (in game
frames) that our approach took to defeat the opponent, show-
ing again a clear advantage for informed policies. Figure 4
shows the average kill score achieved by the opponent at
the end of the game. Since this captures how many units
our MCTSCD approach lost, lower is better. Again we see a
clear advantage of informed strategies, but this time only for
small number of playouts.

Finally, we analyzed the computation time required by
each configuration, since we are targeting a real-time en-
vironment. Figure 5 shows how the increment of playouts
leads to a linear time growth. And the UNIFORM default
policy is faster. Mainly due the fact that it has lower chances
to engage combats, which are expensive to simulate using
our forward model (this is because, when there is a combat,
our forward model needs to simulate the attacks of all the
units involved, which requires more CPU time than when
units just move around in squads).

In summary, we can see that adding the Naive Bayes
model learned offline into MCTSCD improves the perfor-
mance significantly. Of particular interest for RTS games is
the fact that performance is really good with a very small
number of playouts, since the model can guide MCTS down
the branches that are most likely to be good moves. Using
less than 100 playouts in any of our informed scenarios is

104

�����
�����
�����
�����
�����
�����

������
������
������
������

� � � �� �� �� ��
�
��
�
��
�
��
��
��
��
��
��
��
��
�

A
vg

E
ne
m
y
K
il
l S
co
re

Playouts

�, UNIFORM
�, NB

NB-�, NB
BestNB-�, NB

Figure 4: Comparison of average enemy’s kill score using
a MCTSCD with different policies (tree policy, default pol-
icy). Lower is better.

�������

������

�����

����

��

���

� � � �� �� �� ��
�
��
�
��
�
��
��
��
��
��
��
��
��
�

A
vg

S
ea
rc
h
T
im
e
(s
)

Playouts

�, UNIFORM
�, NB

NB-�, NB
BestNB-�, NB

Figure 5: Comparison of average search time using
MCTSCD with different tree and default policies.

enough to match the performance of MCTSCS with 10,000
playouts. Notice also that the search time with 100 playouts
is less than 0.1 seconds. Suggesting that this approach could
be applied without pausing the game during the searches.
Moreover, we would like to point out (as shown in Figures 6
and 7) that the remaining 10% - 15% of games that are not
shown as wins in Figure 2 for BestNB-ε or NB-ε, are actu-
ally not loses, but ties, and most of those are ties because
our system defeated the enemy but was unable to find the
last buildings. This was due to a limitation in our abstrac-
tion, where if a region is too large, MCTSCD does not have
the capability of asking a unit to explore the whole region
(since for MCTSCD that whole region is a single node in
the map graph). As part of our future work, we would like to
improve our map abstraction for not including regions that
are larger than the average visibility range of units, in order
to prevent this from happening.

Conclusions
This paper experiments with the idea of incorporating of-
fline knowledge into MCTS for RTS games. Specifically,
we proposed a Bayesian squad-action probability distribu-
tion model trained from replay data to capture the behavior

��
���
���
���
���
���
���
���
���
���

����

� � � �� �� �� ��
�
��
�
��
�
��
��
��
��
��
��
��
��
�

Playouts

Win Tie Lose

Figure 6: Win/Tie/Lose % of MCTSCD(ε,UNIFORM).

��
���
���
���
���
���
���
���
���
���

����

� � � �� �� �� ��
�
��
�
��
�
��
��
��
��
��
��
��
��
�

Playouts

Win Tie Lose

Figure 7: Win/Tie/Lose % of MCTSCD(BestNB-ε,NB).

of expert players in controlling squads in the game. We then
used this model to inform the tree policy and the default pol-
icy of a MCTSCD algorithm.

Our results show that informing MCTS with out squad-
action probability distribution model results in a great im-
provement in performance, specially when using it in the
tree policy and when we have a tight computation budget.
We saw that NB-ε and BestNB-ε policies achieve a signifi-
cantly higher win ratio than standard ε-greedy. Additionally,
BestNB-ε wins in less time and loses less units than NB-ε.

As part of our future work we would like to explore incor-
porating our model into a wider range of sampling strategies,
such as Naı̈veMCTS, which is designed to deal with a com-
binatorial MAB like the one we are facing in RTS games. We
would also like to explore the idea of using online knowl-
edge to model the behavior of the current opponent (i.e.,
refine the probability model with the behavior we observe
of the current player). Also, our current MCTS framework
only considers military units, we would like to extend our
framework to economy actions in order to have MCTS take
control of all the units of the game, and not just the military
units as we are doing now. Finally, we want to incorporate
strategies to deal with partial observability to be able to han-
dle partially observable games (i.e., fog of war).

105

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235–256.
Barriga, N. A.; Stanescu, M.; and Buro, M. 2015. Puppet
search: Enhancing scripted behavior by look-ahead search
with applications to real-time strategy games. In AIIDE.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. TCIAIG 4(1):1–43.
Buro, M. 2003. Real-time strategy games: a new AI re-
search challenge. In IJCAI, 1534–1535. Morgan Kaufmann
Publishers Inc.
Chaslot, G. M. J.; Winands, M. H.; Herik, H. J. v. d.; Uiter-
wijk, J. W.; and Bouzy, B. 2007. Progressive strategies for
Monte-Carlo tree search. In JCIS.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In CIG,
1–8. IEEE.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In AIIDE. AAAI
Press.
Coulom, R. 2007. Computing Elo ratings of move patterns
in the game of Go. ICGA 30(4):198–208.
Gelly, S., and Silver, D. 2007. Combining online and offline
knowledge in UCT. In ICML, 273–280.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In ECML, 282–293.
Kovarsky, A., and Buro, M. 2005. Heuristic search applied
to abstract combat games. In Conference of the Canadian
Society for Computational Studies of Intelligence (Canadian
AI 2005), volume 3501, 66–78. Springer.
Ontañón, S., and Buro, M. 2015. Adversarial hierarchical-
task network planning for complex real-time games. In IJ-
CAI, 1652–1658.
Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game AI research and competition in StarCraft.
TCIAIG 5(4):293–311.
Ontañón, S. 2016. Informed monte carlo tree search for
real-time strategy games. In CIG.
Perkins, L. 2010. Terrain analysis in real-time strategy
games: An integrated approach to choke point detection and
region decomposition. In AIIDE. AAAI Press.
Ponsen, M. J. V.; Gerritsen, G.; and Chaslot, G. 2010. In-
tegrating opponent models with monte-carlo tree search in
poker. In Interactive Decision Theory and Game Theory.
Rosin, C. D. 2010. Multi-armed bandits with episode con-
text. In ISAIM.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.

2016. Mastering the game of Go with deep neural networks
and tree search. Nature 529:484–503.
Stanescu, M.; Barriga, N. A.; and Buro, M. 2014. Hierarchi-
cal adversarial search applied to real-time strategy games. In
AIIDE.
Synnaeve, G., and Bessière, P. 2012. A dataset for StarCraft
AI & an example of armies clustering. In AIIDE. AAAI
Press.
Uriarte, A., and Ontañón, S. 2012. Kiting in RTS games
using influence maps. In AIIDE. AAAI Press.
Uriarte, A., and Ontañón, S. 2014. Game-tree search over
high-level game states in RTS games. In AIIDE. AAAI
Press.
Uriarte, A., and Ontañón, S. 2015. Automatic learning of
combat models for RTS games. In AIIDE.
Uriarte, A., and Ontañón, S. 2016. Combat Models for RTS
Games.
Weber, B. G., and Mateas, M. 2009. A data mining approach
to strategy prediction. In CIG. IEEE.

106

